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EEN PREFACE

These are exciting times in the parallel and distributed simulation fidd. After many
years of research and development in university and industrial laboratories, the field
has exploded in the last decade and is now seeing use in many real-world systems
and applications. My goal in writing Parallel and Distributed Smulation Systems is
to give an in-depth treatment of technical issues concerning the execution of discrete
event simulation programs on computing platforms composed of many processors
interconnected through a network. The platform may range from tightly coupled
multiprocessor computer systems confined to a single cabinet or room to geo-
graphically distributed personal computers or specialized simulators (for example,
video game systems) spread across the world. This technology can be used to speed
up the execution of large-scale simulations, for example simulations of the next
generation of the Internet, or to create distributed synthetic environments for training
or entertainment.

My goa in writing this book was to bring together into one volume the
fundamental principles concerning parallel and distributed simulation systems that
today are scattered across numerous journals and conference proceedings. The
intended audience includes managers and practitioners involved in research and/or
development of distributed simulation systems. The book can serve as atextbook for
an advanced undergraduate or a graduate level computer science course. The book
might be of interest in other disciplines (for example, industrial engineering or
operations research) although the principal emphasis is on issues concerning parallel
and distributed computation. Prior knowledge of discrete event simulation parallel,
or distributed computation would be helpful, but is not essential as the book will
include brief introductions to these fields.

Contents

The book is divided into three parts. The first provides an introduction to the field.
Chapter 1 describes typical applications where this technology can be applied, and
gives an historical perspective to characterize the communities that developed and
refined this technology. Background information concerning paralel and distributed
computing systems is reviewed. Chapter 2 reviews fundamental concepts in discrete
event simulation to provide a common basis and terminology that is used in the

remavienofietaakcom
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XVi PREFACE

The second part is primarily concerned with parallel and distributed execution of
simulations, primarily for analysis applications such as to design large, complex
systems. Here the goal is to use multiple processors to speed up the execution. Much
of the materia in these four chapters is concerned with synchronization algorithms
that are used to ensure a parallel execution of the simulation yields the same results
& a sequential execution, but (hopefully!) much more quickly. Two principal
approaches to addressing this issue are called conservative and optimistic synchro-
nization. Chapter 3 is concerned with the former, and Chapters 4 and S with the
latter. Chapter 6 is concerned with an altogether different approach to parallel
execution called time parallel simulation that is only suitable for certain classes of
simulation problems, but can yield dramatic performance improvements when it can
be applied.

The third part is concerned with distributed virtual environments (DVEs). Here
the emphasis is on real-time simulations, that is, to create virtual environments into
which humans may be embedded, for example, for training or entertainment.
Chapter 7 gives an introduction to this area, focusing primarily on two efforts
within the defense community, namely Distributed Interactive Simulation (mS) and
the High Level Architecture (HLA) where much of this technology was developed
and has been applied. Chapters 8 and 9 are concerned with two specific issues in
DVEs. Chapter 8 covers the problem of efficiently distributing data among the
participants of the DVE. The first half of the chapter is an introduction to computer
networks which provide the underlying communication support for DVEs. The
second half is concerned with techniques to effectively utilize the networking
infrastructure, particularly for large-scale simulations with many interacting compo-
nents. Finaly, Chapter 9 revisits the problem of time synchronization in DVEs as
well as the problem of ensuring that the different computers participating in the
simulation have properly synchronized clocks.

Part | lays the groundwork for the remainder of the book, so should be read first.
Parts Il and 11l can be read in either order. | have used this book as the text in a 10-
week course in paralel and distributed simulation taught at Georgia Tech, and plan
to use it when we transition to |S-week semesters. Alternatively, this book could be
used for part of a course in discrete event simulation. When used in this manner,
instructors may wish to skip Chapters Sand 6, and the first half of Chapter 8 to
obtain a more abbreviated treatment of the subject material.

Software

Interested readers may wish to try out some of the algorithms discussed in this book.
Although software is not included with the text, it is available. In particular, the
Georgia Tech Time Warp (GTW) software discussed in Chapter 5 and an imple-
mentation of a subset' of the High level Architecture Run Time Infrastructure are
freely available for education and research purposes. Information concerning this
software is available at http://www.cc.gatech.edu/computing/pads. To obtain a
copy.of either of both of these software packages, you may contact me via electronic
mail at fujimoto@cc.gatech.edu.

PREFACE XVii
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EEEN CHAPTER 1

Background and Applications

Imagine that you are responsible for monitoring commercia air traffic in the United
States and providing recommendations to air traffic controllers across the country.
Your objective is to ensure that the air transportation system remains safe and
efficient, and to minimize traveler delays. Severe storms unexpectedly develop in
Chicago, causing the flow of traffic in and out of O'Hare airport to be reduced to
only afraction of its normal capacity. How does this situation affect air traffic across
the country? Should aircraft about to take off be alowed to depart, potentially
creating backlogs of planes that are forced to circle, wasting enormous quantities of
fuel? Or should these aircraft be held on the ground, at the risk of causing traveler
delays and frustrations that might not have been realy necessary? What about
aircraft aready in flight? Should they be rerouted to alternate destinations?
Computer simulations of the national air traffic space provide a means to "test
out" different strategies in order to determine which will be the most effective. But,
existing air traffic simulations may require hours to complete, while decisions must
be made in minutes.

Consider a second scenario. You are an engineer working on designs for the next
generation of the Internet. Specifically, you are responsible for designing commu-
nication protocols that will be used to carry multimedia traffic for awide variety of
users with vastly different requirements, for example, rea-time video teleconfer-
ences requiring low latency transmissions of compressed video frames, electronic
mail that can tolerate higher, more variable transmission delays, or web surfers
transferring large data files, voice and audio transmissions. There are many
important design issues and cost/performance trade-offs you need to consider that
will play an important role in determining the success of your designs in a
competitive marketplace. Again, computer simulation tools are available to evaluate
different designs, but because of the size and complexity of the networks you are
considering, even a single execution of the simulation program that models only a
few minutes of network operation will require hours, or even days, to complete.

Consider ill another scenario. You are the commander of a large military
operation. You must prepare a variety of officers and enlisted personnel for combat
in an engagement that is breaking out in another part of the world. In particular, you
must perform multinational joint mission rehearsals including tank commanders
Seionec@antheaElntednStates, aircraft pilots stationed in England, and naval

2



4 BACKGROUND AND APPLICATIONS

commanders at sea. It is critical that individuals within each group 9am experience
US'IrEg thelr ﬁ:qUipment in situations they may encounter as_well exDerenc
or Ing Wit personnel from other umts in coordinated miTitary Sikes TFme ang
4 geary restnctlOns preclude large-scale field exercises to p ti .
oW can S . . rac’lce maneuvers.
. you properly prepare individuals at geographically distinct locations when

lImited time and resources are at your disposal?

, These SCENarios describe real-world situations that exist today where parallel and
dlstnl?uted simulatlOn technol ?gies can, and in many cases are playing acritical role.
W% Wf”. F&turn to these scenanos momentarily to discuss how such technologies can
help..Flrst, let' us define what is meant by "paralleljdistributed simulation” and
examlne why It has attracted so much interest in recent years.

11 WHY PARALLEL/DISTRIBUTED SIMULATION?

What is Parallel/distributed simulation technology? Simply stated, this is a technol-
ggy that enables a simulatlOn program to be executed on parallel/distributed
Aoniﬁl.lte(ri ‘sys'fe.ms, namely systems composed of multiple interconnected computers.

S this, eﬁﬂ’rﬁ'ﬁﬂ suggests, there are two key components to this technolo . (1)
simulatiOn, and (2) execution on parallel or distributed computers. gy.
lmaélggnwlaﬂon ISa C(_)mputfamon that mpdels the beh@'IOr Of some realor
behavia stem over {Me. Simulations are widely used today to analyze the
ti% AIBr of SySte.n?S such as air traffic control and future generation telecommunica-
Czlgslt]et‘?,)rks wlthout actually constructing the systems and situations of interest
-Onstructing -, prototype may pe cogly, infeasible, and/or dangerous Another
mmportant use Y . 2---=2. Another
into whigh h of simulatlOns today is to create computer-generated «yjr,41 WOrlds

6 VMEN BYymans @nd/or physical devices will be embedded. An aircraft flight
Simulgtor used to train pflots is one such example.

. Pa;ra!]el smulatiOn and distributed simulation refer to technologies that enable a
Snt'aHen program to execute on a computing system containing mﬂmp]g proces—
sors, .such as Personal computers, jnterconnected by acommunication network
Wre) dIS?USS the (_JllstlnctIOn between parallel and _d'Stth_)UtedS'mu | L110n Pased on the
thate 0 cl?nl‘nputlnq system used to execute the simulation For now: sufflcg it %0 sa

p.ara el simulations execute gn a set of computers confined to a's ng]e cabinet 4
machine room, while distributed simulati ; Hetor
phically distributed d simula lons €xecute on machines that are

e ac r0§s a bu}ldlng, untversity campus, or even the world;
There dre pnmanly four principal benefits to executing a simulation
across mu tiple compalters: princip 9 program

geogra-

1. Reduced execution fime. By subdividing a large simulation computation into
many sub-computations, and executing the subcomputations concurrently
across, '&y)ten “different, processors, one can reduce the execution time up
10, factor, of teru Thispis not unlike subdividing your lawn into ten equally
sized &ips, and hmifgiten people each with their own lawn mower tq Work on
a different. strip..In principle; you can mow the entire lawn in only .. enth

11 WHY PARALLEUDISTRIBUTED SIMULATION? 5

the time it would have taken using only one lawn mower. In computer
simulations it may be necessary to reduce execution time 0 that an engineer
will not have to wait long periods of time to receive results produced by the
simulation. Alternatively, when used to create a virtual world into which
humans will be immersed, multiple processors may be needed to complete the
simulation computation fast enough so that the simulated world evolves as
rapidly as rea life. This is essential to make the computer-generated world
"look and feel" to the user just like the red thing.

2. Geographical distribution. Executing the simulation program on a set of
geographically distributed computers enables one to create virtual worlds with
multiple participants that are physically located at different sites. For example,
consider a simulated air battle composed of flight simulators executing on
computers a distinct geographical locations, such as London, New York, and
Paris. Participants in this simulation exercise can interact with each other as if
they were located together at atraining facility at a single site, but without the
time, expense, and inconvenience of traveling to that site.

3. Integrating simulators that execute on machinesfrom different manufacturers.
Suppose that flight simulators for different types of aircraft have been
developed by different manufacturers. Rather than porting these programs to
a single computer, it may be more cost effective to "hook together" the
existing simulators, each executing on a different computer, to create a new
virtual environment. Again, this requires the simulation computation to be
distributed across multiple computers.

4. Fault tolerance. Another potential benefit of utilizing multiple processors is
increased tolerance to failures. |f one processor goes down, it may be possible
for other processors to pick up the work of the failed machine, alowing the
simulation computation to proceed despite the falure. By contrast, if the
simulation is mapped to a single processor, failure of that processor means the
entire simulation must stop.

Returning to our first scenario involving air traffic control, parallel simulation
technigues can reduce the execution time of simulation tools for modeling air traffic
from hours to minutes, or even seconds, enabling these tools to be used "on-line" in
time critical decision-making processes. Similarly, in the Internet design scenario,
paralel simulation techniques can enable much more extensive, detailed analyses of
networks to be performed before a new product is brought to market, thereby
resulting in improved performance, reliability, and/or reduced cost. In these two
applications, reduced execution time is the principal benefit. Fault tolerance is aso a
potential benefit, but, a substantial amount of effort is required to recover and restart
the computation from failed processors in order for the results of the simulation to be
valid.

In the scenario involving the training of military personnel, geographic distribu-
tion and integrating simulators that execute on different hardware platforms are

IMRRANRENsEES 8 higing a distributed simulation approach. Fault tolerance is




6 BACKGROUND AND APPLICATIONS

aso more straightforward, because one often does not need to recover the
computation on failed processors unless they are critical to the entire exercise.
Reduced execution time may be important, particularly as one expands the exercise
to include more and more participants. As mentioned earlier, a training simulation
must be able to complete its computations and advance "time" in the simulated
world as rapidly as time progresses in the rea world, or the simulation will not
appear redlistic. This becomes impossible if the number of entities in the simulated
world increases, unless additional computing resources can be brought together to
execute the simulation computations.

In the remainder of this first chapter we set the stage of the rest of this book. In
particular, we introduce terminology, applications, and certain background informa-
tion such as hardware platforms and underlying technologies that are important to
understand the chapters that follow.

1.2 ANALYTIC SIMULATIONS VERSUS VIRTUAL ENVIRONMENTS

Historically two classes of simulation applications have received the most attention:
analytic simulations and virtual environments. Characteristics that distinguish these
different domains are summarized in Table 1.1.

Analytic simulations usually attempt to capture detailed quantitative data
concerning the system being simulated. For example, in the air traffic simulation,
one might be interested in the average "circling time" for each aircraft when it
arrives at a busy airport. In atelecommunication network simulation, one might be
interested in statistics such as the average delay to perform a file transfer or the
amount of data per second transmitted through a typical connection. Analytic
simulations require that the model reproduce as exactly as possible actua system
behaviors so that the generated statistical results are valid. Analytic simulation is the

TABLE 11 Analytic simulations and virtual environments

Andytic Smulations Virtud Environments

Execution pacing  Typicdly asfad-as-possble  Red-time

Typicd objective  Quantitative anayss of Cregte a redidic and/or entertammg
complex systems representation of an environment
Human interaction  If included, human is an Humans integrd to controlling the
externa observer to the behavior of entities within the mode
model
Before-and-after Attempt to precisdy Need only reproduce before-and-after
relationships reproduce before-and- relationships to the extent that
after relationships humans or physicad components
embedded in the environment can
perceive them

1.2 ANALYTIC SIMULATIONS VERSUS VIRTUAL ENVIRONMENTS 7

"classical" approach to simulation; it has been used as long as electronic computers
have been in existence. For example, the earliest machines were used to compute
artillery shell trgjectories.

Analytic simulation typicaly includes limited, or no interaction, with human
participants or physical devices during the execution of the simulation program. In
many cases users may merely analyze the statistics produced by the simulator after
execution has been completed. Alternatively, the user may view an animation of the
system being modeled, perhaps with an ability to pause the execution and change
certain parameter settings. Analytic simulations typically execute "as-fast-as-possi-
ble," meaning that the simulation attempts to complete its computations as quickly
as it can. This could mean that the simulator advances faster than real-time (for
example, it might simulate hours of system behavior in only minutes of elapsed time
to the user) or that it runs slower than real-time.

A more recent phenomenon in simulation has been to create virtual environments
into which humans or devices are embedded. Perhaps the most familiar use of
simulations for this purpose are video arcade games where the player, often
represented by a character or avatar on the game's display, is placed in a
computer-generated world representing a medieval castle or a modem race track.
This world may be populated by other characters representing other humans or by
computer-generated characters whose behaviors and actions are represented by
programs within the simulator. The battlefield training exercises aluded to earlier
are an example of amultiple user virtual environment simulation widely used by the
military today. A variation on this theme is to embed into the virtual environment
actual physical components, possibly in addition to human participants. This is often
used to test the component, for example, to test a missile defense system for
scenarios that might be difficult and!or expensive to create with live range tests.
Virtual environment simulations with human participants are sometimes referred to
a human-in-the-loop (or man-in-the-loop) simulations, and simulations including
embedded physical devices are also called hardware-in-the-loop simulations.

Virtual environment simulations differ from traditional analytic simulations in
severa important ways. First, they almost aways include human participants or
actual physical devices as entities within the simulation itself, as opposed to external
users viewing or artificially manipulating the simulation & described earlier for
anaytic simulations. Thus it is important that the simulated world advance in time at
approximately the same rate that time advances are perceived by the human
participants. The central goal in most virtual environment simulation to date has
been to give users the look and feel of being embedded in the system being modeled.
As such, it is not dways essentia for these simulations to exactly emulate the actual
system. If the differences between the simulated world and the actual world are not
perceptible to human participants, this is usually acceptable. For example, if two
events occur "close enough” intime that the human cannot perceive which occurred

1More precise meanings of terms such as simulated time, real-time, and wallc10ck time wiJ be given in
Chapter 2. For now, suffice it to say that simulated time is the simulation's representation of time in the
WARN\LATEEIEH &l cer@ @ddti me corresponds to time during the execution of the simulation program.



8 BACKGROUND AND APPLICATIONS

firgt, it may be acceptable for the simulated world to model these events as occurring
in an order that differs from that in which they would actually occur in the real
system.

On the other hand, analytic simulations usually require that the simulator
correctly reproduce the orderings of events, especially ifthere is acausal relationship
between them, for example, an observer should see aweapon fire before it sees that
the target has been destroyed. Failing to do so may compromise the statistics that are
collected, especidly if there is a bias in the outcomes that one observes. For
example, if tanks for the red army are dways observed to fire first when ared and a
blue tank fire a approximately the same time, the "kill" statistics will be biased in
favor of the red army.

In summary, it is useful to distinguish between analytic and virtual environment
simulations because they have different objectives, leading to different requirements
and constraints. To some extent, this dichotomy is historic, as much of the basic
research in these applications has been conducted by different communities. We use
this dichotomy here because these two areas have given rise to different problems
and solutions.

1.3 HISTORICAL PERSPECTIVE

The bulk of the research in parallel and distributed simulation has evolved from three
separate communities. Work in parallel and distributed simulation techniques for
analytic smulation applications grew largely out of the high-performance computing
community, which maintained the goal of reducing the execution time of simulation
computations. Work in distributed virtual environments (DVES) grew largely from
two separate camps. On one hand, the military establishment can be credited with the
development of sophisticated, though costly, geographically distributed virtual
environments for training applications. At approximately the same time, much of
the work originating in the interactive gaming and Internet communities was
focusing on more economical DVEs that could be used by players on personal
computers linked via public networks.

1.3.1 High-Performance Computing Community

Parallel and distributed simulation technologies for analytic simulation applications
originated largely from basic research conducted in universities and research
laboratories in the late 1970s and throughout the 1980s. This research has flourished
in the 1990s. Work in this field began with the development of synchronization
algorithms_to_ensure_that_when_the simulation is distributed across multiple
computers, the same results are produced as when the simulation is executed on a
single machine. Although the first of these synchronization agorithms were
published ins1977, few implementations on parallel and distributed computers
appeared over the next ten years, perhaps due to limited availability of suitable
hardware platformsrsandsprimitive software development environments on the few
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platforms that were available. Simulation of queuing networks (an example of which
will be presented in Chapter 2) was popular for many years. To some extent, this
continues to be a popular benchmark for evaluating the performance of parallel
simulation techniques. Queueing network simulations remain popular benchmarks
because they require little knowledge of a specific problem domain, they can be
coded very quickly, and they are representative of many important application
domains, for example, simulation of telecommunication networks and commercial
arr traffic.

Results from other applications began to appear in 1990. Noteworthy among
these was work in the TWOS project a the Jet Propulsion Laboratory (JPL) in
developing paralel war game simulations for the United States Department of
Defense. As elaborated upon below, subsequent work has also focused on applica-
tions such as telecommunication networks, transportation systems, and digital logic
circuits. At the time of this writing, work in the field has largely been confined to
universities and industrial research laboratories, with application to a handful of real-
world military and commercia simulation problems reported. With inclusion of
these techniques in the U.S. Department of Defense (DoD) High Leve Architecture
(HLA) effort, which will be discussed below and in greater depth in Part |11 of this
book, impact of this technology is accelerating in the late 1990s, especialy for
military applications.

1.3.2 Defense Community

Much of the work in distributed simulation for virtual environments began in the
1980s, largely independent of the work described above concerning analytic
simulations. Compared to the sluggish infiltration of parallel/distributed simulation
technology for analytic applications into real-world usage, technology transfer of
distributed simulation for virtual environments has been rapid, and perhaps most
notably, has gained widespread acceptance in military establishments and the
entertainment industry. A key factor driving the development and adoption of
distributed simulations for synthetic environments has been the need for the military
to develop more effective and economical means of training personnel prior to
deployment. Field exercises are extremely costly activities, and 'thus can only be
utilized rather sparingly. It is clear that embedding personnel in avirtual environment
provides a much more cost-effective, not to mention safer and environmentally
friendlier, training facility. This has driven a large amount of R&D effort in the
United States, Western Europe, and other parts of the world toward development of
the technologies to realize such a capability.

Early work in distributed simulation for virtual environments for the military
began with the SIMNET (SIMulator NETworking) project that extended from 1983
to 1989. Sponsored by the Defense Advanced Research Projects Agency (DARPA)
in the United States, SIMNET demonstrated the viability of interconnecting
autonomous simulators (for example, tank simulators) in training exercises, and it

PR NGR 2594 feal Qysw{or use in actual (as opposed to experimental) training. The
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success of the SIMNET experiment has had far-reaching effects throughout the
defense modeling and simulation community in the United States. SIMNET was
replaced by what came to be known as Distributed Interactive Simulation (DIS)
where standards were defined to support interoperability among autonomous training
simulators in geographically distributed simulation environments.

A second major development springing from SIMNET was the Aggregate Level
Simulation Protocol (ALSP) work that applied the SIMNET concept of interoper-
ability to war game simulations. ALSP enabled war game simulations from the
Army, Air Force, and Navy, for example, to be brought together in a single exercise
to analyze joint military operations. AL SP used synchronization protocols discussed
earlier for analytic simulations; it represents perhaps the most extensive application
of that technology to date. Work in the ALSP community proceeded concurrently
with work in the DIS community that was focused primarily (though not exclusively)
on training.

The next major milestone in the evolution of this technology was the develop-
ment of the High Level Architecture (HLA) which began in 1995 and resulted in the
so-called baseline definition in August 1996. HLA is important for several reasons.
From a practical standpoint, HLA was mandated in September 1996 as the standard
architecture for al modeling and simulation activities in the Department of Defense
in the United States. All DoD simulations are required to become HLA compliant (or
obtain approval for an exception to this requirement) by 1999. From a technica
standpoint, HLA is important because it provides a single architecture that spans
both analytic and virtual environment simulations. In some respects it can be viewed
as amerging of DIS and ALSP into a single architecture. Prior to the HLA effort,
work in the paralleljdistributed analytic simulation community and the distributed
virtual environment communities proceeded largely independent of each other. HLA
was a landmark effort in that it began integrating these technologies in a significant
way. At the time of this writing, the initial baseline definition of the HLA and its
realization in prototype versions of the Runtime Infrastructure (RTI) have been
completed and standardization activities are in progress. Migration of DIS standards
to the HLA is aso under way.

1.3.3 Interactive Gaming and Internet Communities

A second major thread of activity in distributed virtual environments for nonmilitary
applications grew from the interactive gaming and Internet communities. Just as
defense simulations originated from "platform-level" smulators for tanks and
aircraft, nonmilitary DVE work originated in "immersive" games such as Adventure
and.Dungeons.and.-Dragons.-Adventure.was a fantasy computer game created at
Xerox Palo Alto Research Center (PARC) in California in the mid-1970s. In it a
user/player explored a rich computer-generated fantasy world, most of which was
underground in‘a‘maze of caves and hidden passage ways. Adventure was a text-
based game where users typed short phrases to describe their actions (for example,
“move up“), and were given word descriptions of objects and rooms they
encountered in their journey. This fantasy world was complete with a rich variety
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of hidden treasures and a wide assortment of other computer-generated creatures,
both friend and foe, that could help or hinder the player from finding and obtaining
the treasures. A skilled player could day harmful adversaries such as dragons with
various weapons, such as swords and magic potions giving the partaker special
abilities for a limited amount of time. These weapons could be found in different
areas of the virtual world. Adventure was developed in the 1970s and 1980s before
powerful personal computers were widely available. Yet despite the limited interac-
tion alowed by a text-oriented program, it was a very popular game among the
college students who were lucky enough to have computer access. Computer and
video games of this nature continue to thrive today, greatly enhanced with audio
effects and computer graphics.

Adventure was a single-player game. A second, key ingredient in the develop-
ment of DVEs was the introduction of multiple players to the virtual world. Though
not initially computerized, the popular game of Dungeons and Dragons, aso from
the mid-1970s, is credited with being the catalyst for this development. This was a
pencil and paper role-playing game where players gathered to play out roles as
knights and sorcerers in amade-up world created by one of the players, referred to as
the dungeon master. The actua environment could be as simple as a written
description of the various portions of the virtual world, or as elaborate as scde
models.

Computer-generated fantasy games and multiple users/players came together in
the early 1980s with the MultiUser Dungeon (MUD) game developed a the
University of Essex in England. Today, the term MUD is associated with multiplayer
games of this sort in general, as opposed to any particular game. Further the
applications for DVESs extend far beyond games, and a substantial amount of work
has been geared toward nongaming applications.

In addition to computer-generated virtual worlds and the inclusion of multiple
players, a third critical ingredient in the development of DVEs was the unprece-
dented expansion and growth of the worldwide network of computer networks
known as the Internet. With the Internet avirtual environment can support multiple
users who may be scattered around the globe. Multiplayer games with geographi-
caly distributed players are flourishing in the 1990s, despite limited bandwidth (for
example modem lines with as little as 9600 bits per second) and relatively high
network latencies. Continued increases in modem bandwidth (at the time of this
writing in the late 1990s, 50 Kbits/second modems are becoming widely available)
and megabit per second bandwidths (for example, via cable modems or other
technologies) are on their way. The communication bottlenecks that have hitherto
restricted widespread use of distributed virtual environments may be athing of the
past.

1.4 APPLICATIONS

WiV S0y &l Adri C Itbntext, we now survey some of the applications where
parallel and distributed simulation technologies have been applied. While far from
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being complete, this list gives a flavor of some of the current and potential uses of
the technology.

1.4.1 Military Applications

It is clear that the military establishment has had a major role in developing
distributed simulation technology for virtual environments, and to a lesser though
dill significant extent, parallel simulation technology for analytic simulation
applications. Some of the most prominent military applications utilizing this
technology are as follows:

1. War gaming simulations. These simulations are often used to evaluate different
strategies for attacking or defending against an opposing force, or for
acquisition decisions to determine the number and type of weapon systems
that should be purchased to be prepared for future engagements. The
simulation is typically composed of models for battalions, divisions, and 0
forth. Because these simulations usually model groups of units rather than
individual platforms (for example, aircraft and tanks), they are sometimes aso
referred to as aggregated simulations. Two noteworthy examples of the
application of parallel discrete event simulation techniques to war game
simulations are the Concurrent Theater Level Smulation (CTLS) (Widand,
Hawley et d. 1989) and Aggregate Level Smulation Protocol (ALSP) (Wilson
and Weatherly 1994) discussed earlier. The underlying execution mechanism
for CTLS was a parallel simulation executive using a synchronization
algorithm called Time Warp. ALSP used another agorithm caled the
ChandyjMisrajBryant null message protocol. These agorithms will be
discussed in detail in Chapters 4 and 3, respectively.

2. Training environments. As discussed earlier, these simulations embed pilots,
tank operators, commanding officers and their staffs, and the like, into an
environment to train personnel for actual combat. In contrast to aggregated
simulations, many training environments use platform-level simulations that
do model individua tanks, aircraft, and so forth.

3. Test and evaluation (T&E). While training simulations embed humans into a
synthetic battlefield, T&E simulations embed physical components (for
example, a new sensor for detecting missile launches) into a virtual environ-
ment, often to evaluate the effectiveness of proposed new devices or to verify
that manufactured devices operate a reported specifications. The T&E
simulation community has sometimes been referred to as the "Consumer
Reports' for the military because they evaluate new products before they are
manufactured and eventually deployed.

As discussedsearlier, the High Level Architecture effort attempts to integrate
simulations from these three "domains in order to facilitate reuse of simulation
models in new: contexts; thereby reducing the cost of developing new simulators.
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1.4.2 Entertainment

The number of rea F-15 pilots that can benefit from immersion into a computer-
generated dogfight is dwarfed by the number of wannabe pilots that are looking for
recreation on a Saturday night. Application of distributed simulation technology to
the entertainment industry will (and already is) leading to the most significant impact
of this technology on the average citizen. Single-player video arcade games cannot
provide the same kind of entertainment as interactively competing with friends (or
strangers) in a computer-generated virtual world.

Distributed simulation technology can be applied in amusement park and arcade
centers where players are co-located but interact with each other and computer-
generated entities over a local area network. These systems sometimes use costly
custom-designed hardware that can only be justified economically by repeated use
by many users. Another emerging market is the multi-user home entertainment
industry where video game machines or personal computers are interconnected
through the Internet.

Entertainment and training systems employing distributed simulation technolo-
gies have much in common, but they also differ in many important respects.
Obvioudy, entertainment systems must be engaging. Unlike training simulators,
one does not have a captive audience where players must return to fulfill job
requirements. Thus the "realism" of the virtual environment may take second place
to pure excitement and artistic effects. Economic factors playamuch more dominant
role in the design of entertainment systems, sometimes requiring compromises that
would not be necessary in a multimillion dollar training system. Interoperability
among separately developed simulations is a fundamental goa in DIS, but it may be
viewed as undesirable by some in the entertainment industry. This would be true, for
example, when a company marketing proprietary entertainment systems has control,
as a single vendor, over the simulations that will be included in the system.

1.4.3 Social Interactions and Business Collaborations

Another potentialy far-reaching impact of distributed virtual environments is m
creating new means for people to interact socially on the Internet. The Internet has
already made fundamental changes in the way people interact both in the office and
a home. Many believe DVEs represent the next logical step in electronic social
interactions. Already users around the world can "meet" without ever leaving their
own home through Internet newsgroups and "chat rooms." Beyond this, a DVE
application can create more realistic socia settings such as the one known as
Diamond Park developed by Mitsubishi Electric Corp's MERL research laboratory.
Diamond Park provides avirtual park atmosphere where users can meet and interact
in various settings such as the park's cafe, walkways, or meeting areas (Waters and
Barrus 1997). Users can navigate through the park on foot or on bicycle and can
even race against each other! Virtua environments like this may be the norm in the
futureviow surdeh at@@ctomyia the Internet.




14 BACKGROUND AND APPLICATIONS

Virtual environments can also provide a new means for interactions in the
business world between colleagues and clients. Entire "virtual corporations’
could be crested, composed of employees who are based physically at different
locations or different companies but who are working together on ajoint venture. For
example, one can envision building designers and engineers at different locations
walking through a virtual design of a product (a building) to discuss and evaluate
design changes.

1.4.4 Education and Training

Nonmilitary applications for DVEs in education and training abound. Much work
has been accomplished in the medical community using virtual environments for
training as wel as treatment of patients. Computer-generated environments can
provide a more cost-effective (and safe!) means for doctors to practice surgical
techniques. Experimental studies have been performed/conducted using virtua
environments to treat patients with various phobias such as a fear of heights.
Patients are exposed gradually and in a controlled way to (virtual) situations that
cause them anxiety. While much of the work to date in these areas has been focused
on single-user virtual environments (i.e., not distributed), extensions to DVEs to
allow for users to remain in different geographic locations are clear. Work has aso
focused on using DVE technology developed under DIS for nonmilitary applica
tions, such as training ar traffic controllers, or performing exercise drills for
emergency procedures, such as recovery from earthquakes or major accidents.

1.45 Telecommunication Networks

Analytic amUlations have long been used in the telecommunications industry to
evaluate networking hardware, software, protocols, and services. The widespread
deployment of fiber optics technology has had important impacts on the use of
simulation in modeling networks. Firgt, this technology has brought about increased
use of telecommunication networks for applications other than voice communica-
tions, namely transmission of still images, data, and video. So-called Broadband
Integrated Services Digital Networks (B-ISDN) provide a single networking infra
structure to carry these diverse types of traffic. Network designers have had to totally
rethink their designs, and tum toward simulation tools to aid them. Networking
technologies such as Asynchronous Transfer Mode or ATM? have emerged to meet
the challenge of supporting these diverse types of traffic on a single network
infrastructure, (for example, see Partridge 1993).

Second, because the underlying network is based on fiber optic links that can
carry orders of magnitude more traffic than copper cables, simulations become more
time-consuming. This is because one must often model the network for at least the
duration of a.conversation to-collect useful data; that is, simulations of minutes to

2Anunfortunate acrony nm,.this technology.has.nothing to do with Automated Teller Machines used in the
baking industry.
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hours of network operation are required. Because B-ISDN networks carry orders of
magnitude more traffic during this time period, the computation time to complete the
simulation increases in proportion. Parallel simulation techniques offer one approach
toward alleviating this problem.

A typical problem in telecommunications that calls out for the use of parallel
simulation is that of analyzing cell lossesin ATM networks. A cell IS a’53-byte block

f data that is the basic unit transmitted through an ATM network. Each ATM SWitch
contains buffers to hold cells waiting to be transmitted on links. If a link becomes
congested and the buffers become full, subsequent cells that require use of that link
are discarded. The cell loss probability is an important metric that mdicates how
frequently this happens. ATM SWitches often target cell loss probabilities to e 107°:
that is, only one in 10° cells is lost under anticipated traffic .co.nditiOns. ThiS reqUIrS
simulation of at least 1011 cell arrivals to obtain reliable statistical data. As of the late
1990s fast sequential simulation will execute on the order of 10° events per second,
0 (otimistically) equating simulation of each cell arrival with a single event, such a
simulation will require more than 11 days, Just to Simulate a smgle Swittth!

A second major areawhere parallel simulation may have asignificant impact isin
the simulation of large networks such as the Internet. Here, high-performance
simulation engines are required because of the large number of entities that must
be simulated. Simulations of millions of mobile subscribers are sometimes needed.

1.4.6 Digital Logic Circuits and Computer Systems

Like telecommunication networks, simulations of digita electronic circuits and
computer systems is a second area where parallel simulation can play a significant
role. Fast simulation of logic circuits is of considerable interest to the eectrollic
computer-aided-design community because simulation is a major bottleneck in the
design cycle. Final verification of a computer system may reqUire weeks usmg
conventional sequential simulation techniques.

Much of the work in applying parallel simulation techniques to logic circuits has
been focused on the VHDL hardware description language that has become widely
used in industry. Several prototype parallel simulation systems have been developed
that execute VHDL programs on multiple processor computers, With varymg
degrees of success reported in the literature. Successful demonstrations typically
report up to an order of magnitude reduction in execution time.

While so-called gate-level logic simulations focus on modelimg mdividual C|rCUIts
for implementing primitive Boolean functions and storage elements, h.igher-level
simulations of computers using models for switches, processors, memOnes, and 0
forth, are aso used extensively in preliminary investigations of design aternatives.
These higher-level simulations often include simulated executions of benchmark
programs on the modeled machine to evaluate it under realistic workloads. Direct
execution is a technique where the benchmark program [S executed directly on the
machine used to perform the simulation rather than use a (much dower) software
interpreter. Prototype parallel simulation systems using .technlques such as these
haveeen reimargiaiedomyield very accurate Simulation results, withm a few
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percent of measurements from a realized system, while delivering up to an order of
magllltude reduction in computation time.

1.4.7 Transportation

Simulation can play an important role in designing and managing road and air
transportation systems. It can be used as an analysis tool to evaluate the effectiveness
of adding a new runway to an airport, or rerouting vehicular traffic after the
completion of amajor sporting event. As alluded to earlier, it may be used "on-line"
in developing strategies to respond to an unexpected event, for example, congestion
resulting from adverse weather conditions.

1.5 UNDERLYING TECHNOLOGIES

Parallel and distributed simulation is made possible by the confluence of three
essential, underlying technologies:

* Integrated circuits. The first key ingredient is an inexpensive computer, thereby
making systems composed of tens, hundreds, or even thousands of computers
economically feasible. Fundamental to this development are steadily decreas-
ing costs of integrated circuits, driven largely by an increasing ability to
squeeze more and more circuits onto a single silicon chip. For example, the
cost of random access memory (RAM) that accounts for a significant portion
of the cost of a personal computer or workstation has, over the long term,
decreased by 40% per year (Hennessy and Patterson 1996).

» High-speed intercomputer communications. There are two flavors of technol-
ogy at work here. On the one hand, high-speed switches enable one to
construct systems containing tens to hundreds or even thousands of processors
that reside within a single cabinet or computer room. On the other hand,
advances in fiber optics technology is fueling a revolution in the telecommu-
nications industry, making possible computing systems distributed across
continents. These advances enable one to consider developing computer
applications utilizing many geographically distributed machines.

* Modeling and simulation. The fina ingredient are technologies to enable
construction of models of actual or envisioned real-world systems that can (1)
be represented in the internal storage of a computer, and (2) be manipulated by
computer programs to emulate the evolution of the actual system over time.
Here, we are primarily concerned with discrete event simulation, where
changes.in-the state_of the _simulation are viewed as occurring at distinct
points in time.

In many applications other technologies such as graphics, human-computer
mterfaces, |and-databases clearly ‘play @ critical role. However, these technologies
are somewhat tangential to the focus ofthis book, and are not discussed further here.
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1.6 HARDWARE PLATFORMS

The hardware platforms of interest here contain a potentially large number of
processors interconnected through a communication network. In most cases the
processor is a general purpose CPU (central processing unit), often identical to those
commonly found in personal computers and engineering workstations. The switch-
ing network may be as specific as a customized switch for a particular multi-
processor system, or as general as the Internet.

1.6.1 Parallel versus Distributed Computers

Multiple-CPU hardware platforms can be broadly classified into two categories:
parallel and distributed computers. Differences between these platforms are summar-
ized in Table 1.2. Parallel and distributed computing platforms are distinguished by
the physical area occupied by the computer. The processors in parallel computers
are in close physical proximity, usually within a single cabinet, or a small number of
adjacent cabinets in a machine room. These are usually homogeneous machines,
using processors from a single manufacturer. These machines normally provide
switching hardware tailored to the parallel computer, so the delay in transmitting a
message from one computer to another (referred to as the communication latency) is
relatively low. This latency is typically a few microseconds to tens of microseconds
for a message containing a few bytes in contemporary machines. Latency is
important because it has a large impact on performance; if latencies are large, the
computers may spend much of their time waiting for messages to be delivered. Here,
communication latency is perhaps the single most important technical aspect
differentiating parallel and distributed computers. There are three principal classes
of parallel computers that are in use today: shared-memory multiprocessors,
distributed memory multicomputers, and SMD machines (see Fig. 1.1), as will be
elaborated upon momentarily.

Distributed computers cover a much broader geographic area. Their extent may
be confined to a single building, or may be as broad as across an entire nation or
even the world. Unlike parallel computers, each node of a distributed computer is
usually a stand-alone machine that includes its own memory and I/O devices.
Commercial off-the-shelf personal computers or engineering workstations, often
from different manufacturers, are usually used. Communication latencies are usually

TABLE 12 Contrasting paralel and distributed computers

Parallel Computers Distributed Computers

Physical extent Machine room Single building to global
Processors Homogeneous Often heterogeneous
Communication network Customized switch Commercial LAN or WAN
Communication latency Less than 100 microseconds Hundreds of microseconds

to seconds
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Hardware Platforms

Parallel Computers Distributed Computers

shmmIMD l
memory machines networked

_ workstations
distributed

memory
(multicomputers)

Figure 1.1 Taxonomy of important classes of parallel and distributed computers.

on the order of a few hundreds of microseconds for distributed computers with
processors in close proximity (for example, a single building), but they may be as
large as hundreds of milliseconds or even seconds for machines covering large
geographical areas. In the latter case, satellites may be used for some communication
links, contributing to increased latency. The latency of distributed computers is much
higher than parallel machines because (I) signals must traverse large physica
distances and (2) complex software protocols designed for interconnecting auton-
omous computers from different manufacturers are usually used rather than
customized hardware and software designed for a specific interconnection scheme.
While technological advances may be able to substantially reduce software over-
heads for communication, latency between geographically distributed machines is
fundamentally limited by the speed of light, which is approximately 2.1 x 108 meters
per second in optical fiber, or 210 kilometers (131 miles) per millisecond. A modem
microprocessor such as that included in personal computers can execute tens to
hundreds ofthousands of machine instructions (where each instruction can perform
a simple operation such as an integer addition) in one millisecond, so this is a
substantial amount of time from a computing perspective.

Recently the distinction between parallel and distributed computers has become
blurred with the advent of the network of workstations, which is a cluster of
workstations interconnected through a high-speed switch usually confined to asingle
room. Through the use of new switching techniques that bypass traditiona
communication protocols, communication latency of these machines approach that
of conventional parallel computers. Are these paralel or distributed computers?
Here, because of the close physical proximity of the machines, they are characterized
as paralel computers, though often these systems are classified as distributed
machines. Because these machines often include aspects common to both parallel
and distributed computers, the characterization is perhaps not so important.

Simulations that execute on shared memory multiprocessors, multicomputers, or
SIMD machines are referred to as parallel simulation programs. The focus of this
book with respect to parallel simulations is on discrete event simulations (discussed
in Chapter 2) ‘used for analysis. The field concerned with this subject is called
parallel discrete event simulation (PDES). Here, the terms parallel simulation and
parallel discrete event simulation will 'be used synonymously.
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Simulations executing on distributed computers are referred to as distributed
simulations. Distributed smulations may be used for analytic purposes, or more
commonly for constructing distributed virtual environments. The latter is perhaps
the more common application for distributed simulation technology, and the term
distributed simulation in the literature sometimes refers exclusively to distributed

virtual environments.

1.6.2 Shared-Memory Multiprocessors

Shared-memory multiprocessors, distributed memory multicomputers, and SIMD
machines provide different programming models to the application. The distinguish-
ing property of the programming model for shared-memory multiprocessors is one
may define variables that are accessible by different processors. Thus one can define
avariable X that can be autonomously read or modified by one processor without the
intervention of another.

Shared variables and message passing are the two dominant forms of interpro-
cessor communications used in parallel and distributed simulation. Message-passing
mechanisms, widely used in parallel simulation, can be implemented using shared
memory by defining shared data structures (queues) to hold incoming or outgoing
messages.

One type of shared-memory machine, the symmetric multiprocessor (SMP), has
become increasingly popular. A typical shared-memory machine is depicted in
Figure 1.2. These systems consist of off-the-shelf microprocessors connected to
memory through a high-speed switch, such as a bus. Frequently accessed instruc-
tions and data are stored in a high-speed cache memory that is attached to each
processor. Typically the multiprocessor hardware automatically moves data and
instructions between the cache and "main" memories, so the programmer need not
be concerned with its operation, except perhaps to tune the program to maximize
performance. Consistency protocols are required to ensure that multiple copies of
any shared variable residing in different caches remain up-to-date if one copy is
modified; this is often realized in the hardware by either invalidating or updating
copies residing in other caches when one copy is changed. The Sun Enterprise
system is an example of a contemporary SMP. Personal computers (PCs) containing

CPU CPU CPU
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WWW imareal2aBléaktiagram of a typical shared-memory multiprocessor.
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multiple CPUs in an SMP organization are also becoming common. Most SMPs
only support alimited number of processors (for example, up to 20 or 30), although
larger shared-memory machines containing hundreds of processors have been
constructed in the past.

A second class of shared-memory multiprocessor is the so-called nonuniform
memory access (NUMA) machine. These machines are typically constructed by
providing memory with each processor (as opposed to separate memory modules as
shown in Fig. 1.2) but alow each processor to directly read or write the memory
attached to another processor (as well as its own memory). Unlike symmetric
multiprocessors, the programmer's interface to these machines distinguishes between
"local" and "remote" memory, and provides faster access to loca memory. This
makes these machines more difficult to program than so-called uniform memory
access (UMA) machines where the average access time to any memory location is
the same. This is because in aNUMA machine the programmer must carefully map
program variables to memory modules in order to minimize remote references, or
else pay a severe performance penalty in making frequent accesses to remote
memory. Access to remote memory typically takes an order of magnitude (or
more) longer than an access to a loca memory location. The Silicon Graphic's
Origin multiprocessor is one example of a NUMA machine.

1.6.3 Distributed-Memory Multicomputers

Multicomputers do not support shared variables. Rather, adl communications
between processors must occur via message passing. Message-passing libraries
are provided to send and receive messages between processors. Examples include
the Cray T3D, NCube/Ten, and Intel Paragon. Large multicomputers may contain
hundreds of processors.

A block diagram for a typical distributed memory multicomputer is shown in
Figure 1.3. Each "node" of the network is not unlike that found in personal
computers; it includes a CPU, cache memory, and a communications controller that
handles interprocessor communication. Unlike the cache used in shared-memory
multiprocessors, the cache in each multicomputer node only holds instructions and
data for the local processor, 0 no cache coherence protocol is heeded. The memory

CPU CPU
cache | | memory cache | | memory
+ | | ] [ ] *
communications communications
controller controller
I |

interconnection network

Figure 1.3 /'Block diagram of a typical distributed-memory multicomputer.
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in each node can only be accessed by the CPU in that node. The communications
controller is responsible for sending and receiving messages between nodes and
typically transfers messages directly between that node's memory and the inter-
connection network. Such transfers that usually do not require the intervention of the
CPU, except to initiate the transfer or to be notified when the transfer is completed,
are referred to as direct memory access (DMA) operations.

In principle, one could implement shared-memory operations in software on top
of a distributed-memory architecture, providing the illusion to the programmer of
having shared memory. For example, read and write operations could be imple-
mented by sending messages to and from the processor on which aprogram variable
resides, and copies of frequently referenced remote memory locations can be kept in
the local processor with software used to maintain coherence. Software systems that
support this capability are often referred to as distributed shared-memory (DSM)
systems. Because these mechanisms must be implemented in software, however, the
overhead associated with managing the memory system in this way may be
prohibitive.

The distinction between shared-memory multiprocessors and multicomputers is
important because the common address space provided by shared memory machines
allows global data structures referenced by more than one processor to be used; these
are not 0 easily implemented in distributed-memory multicomputers. Also, different
memory management techniques may be used in shared-memory machines. For
example, as will be seen in Chapter 5, it is possible to define memory management
protocols in shared-memory computers that use, to within a constant factor, the same
amount of memory as a sequential execution of the program. Such techniques have
not yet been developed for distributed-memory machines.

1.6.4 SIMD Machines

SIMD stands for single-instruction-stream, multiple-data-stream. The central char-
acteristic of these machines is that all processors must execute the same instruction
(but using different data) a any instant in the program's execution. Typically these
machines execute in "lock-step," synchronous to a global clock. This means all
processors must complete execution ofthe current instruction (some may choose not
to execute that instruction) before any is allowed to proceed to the next instruction.
Actually lock-step execution need not be gtrictly adhered to o long as the machines
appears to the application that it operates in this fashion. Lock-step execution and the
constraint that al processors must execute the same instruction distinguish these
machimes from the others, so-called MIMD (multiple-instruction-stream, multiple-
data-stream) computers that are described here.

A block diagram for a typical SIMD machine is depicted in Figure 104. The
control unit fetches instructions from the control memory, and then broadcasts that
mstruction to each of the processing elements. Each processing element contains an
ALU, registers, and control logic to implement machine instructions (LOAD,
STORE, ADD, etc.). Upon receiving an instruction from the control unit the

ProgesaNon e EoNes that instruction, possibly accessing its local'data
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instruction

I memory
I control unit I
I | 1
processing processing processing
element element element
data data e o o data
memory memory memory

interconnection network

Figure 1.4 Block diagram of atypicd SIMD machine.

memory or the interconnection network depending on the type of instruction. For
example, a vector ADD operation might be performed by distributing the vector
across dl of the data memories, then having each processing element execute two
LOAD instructions to fetch an element from each of the arrays into its local registers,
next an ADD instruction to add the datavalues and store the result into another local
register, and finally a STORE instruction to write the result into alocation in the data
memory.

SIMD machines typically contain more, abeit simpler, processors (processing
elements) than either multiprocessors or multicomputers. Because they are simpler
than complete microprocessors, custom-designed components are usualy used
rather than off-the-shelf parts.

Because dl processors in an SIMD machine must execute the same instruction,
these machines are more specialized than MIMD machines. The bulk of the effort in
parallel simulation has been on MIMD machines, but some techniques are applic-
able on SIMD machines as well.

1.6.5 Distributed Computers

Two characteristics that distinguish distributed computers from parallel machines are
heterogeneity and the network used to interconnect the machines. Unlike parallel
computers, distributed systems are often composed of stand-alone computer work-
stations from' different manufacturers: Unix-based workstations (for example, Sun,
Silicon Graphics, DEC, or IBM workstations), and personal computers are most
commonly used for distributed simulations today. Heterogeneity is important
because many, distributed simulators are constructed by interconnecting existing
sequential simulators (for example, tank simulators in DIS) operating on specific
workstations. Heterogeneity eliminates the need to port existing simulators to new
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platforms, and it enables participation of users with different computing equipment
in distributed simulation exercises.

While parallel computers use interconnection switches customized for the
processors that they are interconnecting, distributed computers use genera inter-
connects based on widely accepted telecommunication standards such as asynchro-
nous transfer mode (ATM) or Ethernet for interconnecting equipment from different
manufacturers. The price of generality is performance, as complex software proto-
cals inflate communication latencies to be one to two orders of magnitude larger
than that of parallel machines, even for equipment in close physical proximity of
each other. One can expect that this gap will be reduced in the future, however,
blurring the distinction between parallel and distributed machines.

Different distributed computers are distinguished by the geographical extent
covered by the system, which in tum dictates the type of network used to
interconnect the machines. Local area network (LAN) based systems consist of a
collection of machines in a limited geographic area, such as within a single building
or a university campus, interconnected through a high-speed network or switch.
MAN (metropolitan area network) based systems have the physical extent of a city,
and aWAN (wide area network) based systems may be distributed across anation or
the world.

1.7 SUMMARY

Paralled and distributed simulation technology can provide substantial benefit in
situations such as the following:

1. Time critical applications where simulations are used as decision aids (for
example, how do | re-route air traffic?), and results are needed on very short
notice.

2. Design of large and/or complex systems where execution of the simulation
program is excessively time-consuming.

3. Virtua environments such as for training, where participants and/or resources
are at geographically distant locations.

A variety of applications ranging from training to entertainment to the design of the
next generation of the Internet are identified as targets for this technology.
Simulation applications were broadly divided into two categories: anaytic
simulations and distributed virtual environments. This distinction is important
because each domain presents different requirements and technical challenges.
Dividing simulations applications in this way also provides a convenient means
for separating work in paralel and distributed simulation technology. Part 1l of this
book focuses on anaytic applications, while part 111 focuses on distributed virtual
environments. Finally the underlying computing platform can be broadly classified
as Y&y dpafaiddiag. @3tfibuted computer, with geographica distribution of the
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processors used as the distinguishing characteristic. This distinction is important
because different communication latencies are implied, leading to different problems
and solutions. The distinction between "parallel simulation" and "distributed
simulation" that is used here is based on this latter categorization.

1.8 ADDITIONAL READINGS

Numerous conferences report recent advances in the paralel and distributed
simulation fidd. The ACMjIEEEjSCS Workshop on Parallel and Distributed
Smulation (PADS) is the premier conference in the parallel discrete event simulation
area (for analytic simulation applications) and has been operating since its inception
in 1985, but results also appear in a variety of other conferences, including the
Winter Smulation Conference, and the Summer Computer Smulation Conference
and the Annual Simulation Symposium. The ACM Transactions on Modeling and
Computer Smulation is a journal that includes articles concerning parallel and
distributed simulation technology.

The literature contains numerous studies of applying parallel discrete event
simulation techniques to specific applications. A few relevant references are listed
below:

 Battlefield simulation (Wieland, Hawley et d. 1989; Morse 1990; Rich and
Michelsen 1991; Steinman and Wieland 1994; Hiller and Hartrum 1997).

e Computer architectures (Konas and Yew 1992; Bailey, Pagels et d. 1993,
Reinhardt, Hill et d. 1993; Agrawal, Choy et d. 1994; Konas and Yew 1994;
Shah, Ramachandran et d. 1994; Chandrasekaran and Hill 1996; Dickens,
Heidelberger et d. 1996); direct execution is described in (Fujimoto 1983).

« Digital logic circuits (Su and Seitz 1989; Chamberlain and Franklin 1990; Lin,
Lazowska et d. 1990; Briner 1991; Chung and Chung 1991; Soule and Gupta
1991; Nandy and Loucks 1992; Willis and Siewiorek 1992; Manjikian and
Loucks 1993; Sporrer and Bauer 1993; Chamberlain and Henderson 1994;
Costa, DeGloria et d. 1994; Kapp, Hartrum et d. 1995; Hering and Haupt
1996; Keller, Rauber et d. 1996; Kim and Jean 1996; Krishnaswamy and
BanneJjee 1996; Chen, Jha et d. 1997; Frohlich, Schlagenhaft et d. 1997,
Krishnaswamy, Banerjee et d. 1997); see (Bailey, Briner et d. 1994) for a
survey of this area

 Ecological systems (Ebling, DiLorento et d. 1989; Deelman and Szymanski
1997; Glass, Livingston et d. 1997).

o _Petri_networks (Kumar_and Harous, 1990; Nicol and Roy 1991; Thomas and
Zahorjan| 1991; Baccelli and Canales 1993).

» Telecommunication networks (Mouftah and Sturgeon 1990; Phillips and
Cuthbert*1991; Tallieu and Verboven 1991; Earnshaw and Hind 1992;
Turner and Xu 1992;" Chai~and Ghosh 1993; Ronngren, Rajael et d. 1994,
Carothers, Fujimoto et d. 1995; Unger, Gomes et d. 1995; Bagrodia, Chen et
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a. 1996; Heo, Wilson et d. 1996; Kumaran, Lubachevsky et d. 1996; Cleary
and Tsai 1997).

 Transportation systems (Merrifield, Richardson et d. 1990; Wieland, Blair et
d. 1995; Mitre Corp. 1997; Wieland 1997).

A readable introduction to DIS is provided in DIS Steering Committee (1994). The
August 1995 issue of the Proceedings of the IEEE includes severa articles
concerning DIS, and the March 1997 issue of IEEE Spectrum concerning distributed
virtual environments. A historical look a DIS is presented in Voss (1993). Severa
conferences include papers on recent work in the field. The Smulation Interoper-
ability Workshop (SW) meets every six months in Orlando, Florida, and focuses on
distributed simulation for military applications. An important subject of this work-
shop concerns definition of standards to facilitate interoperability of simulations;
previously called the DIS Workshop, the IEEE standards were developed in
association with the forerunner to this meeting. The Defense Modeing and
Simulation Office's web cite (http:j jwww.dmso.mil) is the best source of informa-
tion concerning the High Level Architecture, though numerous papers on the HLA
appear in the SIW workshop. In a nonmilitary setting the bimonthly journal
Presence: Teleoperators and Virtual Environments published by The MIT press
includes numerous articles concerning the development of virtual environments,
human factors issues, and applications. Recent developments in the field appear in
the IEEE's Virtual Reality Annual International Symposium (VRAIS).

There are several good textbooks on parallel and distributed computer architec-
tures. For example, Hennessy and Patterson (1996) covers shared-memory and
message-passing multicomputers as well as networked workstation platforms. Reed
and Fujimoto (1987) is devoted to message-based multicomputer networks and
includes a chapter on parallel discrete event simulation. Other books providing broad
coverage of parallel computer architecture include Stone (1990), Hwang (1993), and
Flynn (1995), among others. A survey of techniques for implementing shared-
memory operations on distributed-memory computers is presented in Nitzberg and
Lo (1991).
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I CHAPTER 2

Discrete Event Simulation
Fundamentals

A simulation is a system that represents or emulates the behavior of another system
over time. In a computer simulation the system doing the emulating is a computer
program. The system being emulated is called the physical system. The physica
system may be an actual, realized system, or it may only be a hypothetical one, for
example, one of several possible design alternatives that only existsin the mind of its
inventor.

A physical system contains some notion of state that evolves over time, for
example, the number of aircraft waiting to land a an airport. The simulation must
provide (1) arepresentation of the state of the physical system, (2) some means of
changing this representation to model the evolution of the physical system, and (3)
some representation of time. To address (1), computer simulations define a collection
of state variables, namely program variables specified in some high-level program-
ming language such as C or Java that represents the state of the physical system. To
address (2), changes in the state of the physical system are realized by the simulation
program writing new values into these state variables. Finaly, time in the physical
system is represented through an abstraction called simulation time. This is
discussed next.

21 TIME

There are several different notions of time that are important when discussing a
simulation. It is imperative to keep these concepts distinct, since this is perhaps one
of the greatest sources of confusion when beginning to learn about parallel and
distributed simulations.

The following definitions will be used throughout:

1 Physical time refers to time in the physical system.

2. Smulation time is an abstraction used by the simulation to model physical
time. A more precise definition will be given momentarily.

WRWVRGAPEK e £qheys to time during the execution of the simulation program.
27
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A simulation program can usually obtain the current vaue of wallclock time
(accurate to some specifiable amount of error) by reading a hardware clock
maintained by the operating system.

To illustrate these different notions of time, consider a simulation of the transporta-
tion system in Atlanta during the 1996 summer Olympic games. Physical time for
this simulation extends from July 19 to August 4, 1996. Simulation time might be
represented in the simulation program by a double precision floating point number
with each unit corresponding to a single day. In this case, smulation time advances
from 0.00 to 17.00 during each execution of the program. |f the simulation program
ran for three hours on the afternoon of February 25, 1995, while planning for the
Olympics, wallclock time might extend from 3:00pPm to 6:00PM on that day.

All three definitions of time make use of scales or axes to represent specific
instants of time and to define before and after relationships among these instants.
Physical time and wallclock time are essentially the same as "time" used in the
conventional sense, so we do not dwell upon their meaning here. Simulationtime is a
new concept that only exists in simulated worlds, and is defined as follows.

Definition Smulation time is defined as atotally ordered set of values where each
value represents an instant of time in the physical system being modeled. Further, for
any two values of simulation time T, representing physical time i+ and T,
representing p,, if T, < T,, then p1 occurs before p,, and (T, - T,) is equal to
Py - PI) *K for some constant K. If T, < T,, then T, is said to occur before T,,
and if T, > T,, then T, is said to occur after T,-

The linear relationship between intervals of simulation time and intervals of
physical time ensures durations of simulation time have a proper correspondence to
durations in physical time.

For any given simulation, one common, global simulation time scale is used that
is recognized by al components of the simulation, just as al countries in the world
recognize Greenwich Mean Time. This ensuresthat dl parts of the simulation have a
common understanding of before and after relationships among simulated actions
that occur a specific instants of simulated time.

2.2 REAL-TIME, SCALED REAL-TIME, AND AS-FAST-AS-POSSIBLE
EXECUTION

The progression of simulation time during the execution of the simulation mayor
may_not_have a_direct_relationship_to_the progression of wallclock time. In
simulations used for virtual environments, simulated time must be made to advance
in synchrony with wallclock time, or the simulated environment will appear
unrealistic. For-example, if simulated time advanced more slowly than wallclock
time, the virtual| environment would appear to be sluggish and unresponsive to user
actions. In‘atraining exercise;tasks would appear to human participants as being too
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easy because more time is alowed for the human to perform operations than would
be provided in the actual (physical) system. Similarly, if simulated time advanced
more rapidly than wallclock time, human participants would be a a disadvantage.
Simulation executions where advances in simulation time are paced by wallclock
time are often referred to as real-time executions, and simulators designed to operate
in this mode are called real-time simulators. Because of this relationship between
simulation time and wallclock time in real-time simulations, the two are sometimes
viewed as being synonymous in the distributed simulation literature. It is important
to keep these two concepts distinct, however.

A variation on the above is scaled real-time execution. Here, simulation time
advances faster or slower than wallclock time by some constant factor. For example,
the simulation may be paced to advance two seconds of simulation time for each
second of wallclock time, making the simulation appear to run twice as fast as the
real world, not unlike pressing the fast-forward button on aVVCR. This might be done
in atraining session to skip over uninteresting parts of the exercise. Similarly one
might dow down the simulation by a certain constant factor to provide more detailed
(dow motion) views of other parts. A real-time execution is a special case of a scaled
real-time execution where the scale factor is set to one.

Real-time and scaled real-time simulations use a mapping function to trandate
wallclock time to simulation time. Specificaly, the following function can be used to
convert wallclock time to simulation time:

T, = W2S(T,) = Tyun + Scale % (T, — Tystart)s

where T,, is a vaue of wallclock time, Tg,, is the smulation time at which the
simulation begins, T, IS the wallclock time at the beginning of the simulation,
and Scale is the scale factor. If Scale is 2, then the simulation runs twice as fast as
wallclock time, namely advancing one second in wallclock time corresponds to
advancing two seconds in simulation time.

In analytic simulations that do not include humans or physical devices as
components within the simulation, the progression of simulated time is usualy
not paced by wallclock time; aunit of advance in simulated time could require a few
seconds in wallclock time during one part of the simulation, minutes in another part,
or even hours in athird. These simulations are sometimes referred to as as-fast-as-
possible simulations because one wishes to complete the execution of the simulation
as quickly as possible, without any concern for maintaining a fixed relationship
between advances in simulation time and wallclock time. The relationship between
the rate of advance in simulation time with advances in wallclock time bears no
significance, except to the extent that it provides a metric of how long the user has to
wait to get the results of the simulation.

One can design simulation programs that can be used for either real-time or as-
fast-as-possible executions. To accomplish this, one must augment an as-fast-as-
possible simulation with a mechanism to pace its execution with wallclock time.
This assumes, of course, that the unpaced execution advances simulation time faster

thayywall dhpektresdoopss, it is easy to dow down asimulation, but often difficult
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to speed one up! The pacing mechanism merely introduces a waiting mechanism to
prevent the simulation from advancing simulation time ahead of wallclock time by
more than some prescribed amount. This will be illustrated in the next section.

2.3 STATE CHANGES AND TIME FLOW MECHANISMS

The discussion thus far has focused on temporal aspects concerning the execution of
the simulation. A second, independent classification corresponds to the manner in
which the state of the model changes as simulation time is advanced, sometime
referred to as the timeflow mechanism. This classification of simulation models is
depicted in Figure 2.1. Simulation models may be broadly classified as continuous or
discrete. In a continuous simulation, the state of the system is viewed as changing
continuously over time. The behavior of the system is typically described as a set of
differential equations that describe how the system state changes as a function of
simulation time. Typicad examples of continuous simulation problems include
modeling weather or climatic conditions, airflow around an aircraft wing, or changes
in voltage on wires in an electronic circuit. Continuous models of the motion of
vehicles (for example, aircraft, ships, robots) were used in some of the earliest
distributed simulation applications for virtual environments. An extensive literature
has developed concerning the use of parale and distributed computers for
continuous simulation problems, primarily to reduce execution time. A good
introduction to the use of parallel computing in this field is described in Bertsekas
and Tstsiklis (1989).

In a discrete simulation, the simulation model views the physical system as only
changing state at discrete points in simulation time. Conceptually the system is
viewed as "jumping" from one state to the next, much like moving from one frame
to another in a cartoon gtrip.

A simulation program defines a collection of state variables, and then defines the
rules to modify these variables across simulation time. This concept can be
represented via a space-time diagram such as that depicted in Figure 2.2. The y-
axis of this graph represents the state variables and the x-axis denotes simulation

computer
simulation

discrete continuous
models models

event time-
driven stepped

Figure 2.1 Classification of simulation paradigms.
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Figure 22 Space-time diagram for (a) time-stepped and (b) event-driven discrete-event
simulations.

time. A horizontal "strip," namely al points (*,X)3 represents the evolution of the
variable X across smulationtime. A change to state variable X at simulation time Tis
represented by avertical line in the space-time diagram at coordinate position (T, X).
A vertical strip, namely al points (T, *) represents the state of the simulation model
a simulation time T. The task of the simulation programisto "fill in" the space-time
diagram by computing the values of each of the state variables across simulation
time. In a discrete smulation, each change to a state variable occurs a a specific
instant in simulation time.*

231 Time-Stepped Execution

The two most common types of discrete simulations are called time-stepped and
event-driven (or sometimes called event-stepped) simulations. These two categories
of simulation are distinguished by the time flow mechanism used by the simulation
to advance simulation time. In a time-stepped simulation, simulation time is

3The character * denotes al values.

4In practice, this is also true for continuous simulations because, even though the state variables are viewed
as changing continuously over time, the simulation program will define time steps and typically compute
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subdivided as a sequence of equal-sized time steps, and the simulation advances
from one time step to the next. The execution of a time-stepped simulation is
depicted in Figure 2.2(a). A time-stepped simulation program fills in the space-time
diagram by repeatedly computing a new state for the simulation, time step by time
step, much like a brick layer building awall one layer of bricks a atime. Actualy
not every state variable need be modified in each time step, but the execution
mechanism can only advance from one time step to the next.

Actions in the simulation occurring in the same time step are usually considered
to be simultaneous, and are often assumed not to have an effect on each other. Thisis
important because it allows actions occurring within each time step to be executed
concurrently by different computers. In this paradigm, if two actions have a causal
relationship that must be accurately modeled in the simulation (for example, an
aircraft must vacate a runway before the next aircraft can land) the actions must be
simulated at different time steps. Thus the size of the time step is important because
it determines the precision of the simulation with respect to time.

A variation on the time-stepped mechanism is sometimes used in real-time and
scaled real-time simulations. Here, the simulation must control advances in simula-
tion time to be in synchrony with wallclock time. A non-real-time time-stepped
simulation must repeatedly compute the new state of the system at the end of each
time step. The real-time version is Similar, except the program waits until wallclock
time has advanced before advancing to the next time step. The main loop for a
typical real-time simulation is shown in Figure 2.3. In this paradigm, the computa-
tion for each time step should be completed before wallclock time advances to the
next time step, or else the ssimulation will lag behind wallclock time.

2.3.2 Event-Driven Execution

Rather than compute a new value for state variables each time step, it may be more
efficient to only update the variables when "something interesting" occurs. The
"something interesting" that occurs is referred to as an event. This is the key idea
behind discrete event simulations. An event is an abstraction used in the simulation
to model some instantaneous action in the physical system. Each event has atime
stamp associated with it that indicates the point in simulation time when the event
occurs. Each event usually results in some change in one or more state variables
defined by the simulation.

while (simulation in progress)
wait until (W2S(wallclock time) = simulation time}
compute state of the system at the end of this time step

advance:simulation time [to the next time step

Figure 2.3 'Main loop in a time-stepped simulation where execution is paced to wallclock
time. The W2S function converts wallc10ck time to simulation time.
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For example, consider a simulation of an aircraft flying from New York to Los
Angeles. A time-stepped simulation with time step size of ten minutes might
compute the aircraft's new position every ten minutes. A more efficient approach
is to compute the total flight time, and only update the aircraft's position variable
when simulation time advances to the time the aircraft reaches Los Angeles. The
aircraft arriving in Los Angeles is modeled by an event. In an event-driven
simulation, changes in state variables only occur as the result of some event. This
approach assumes intermediate positions of the aircraft are not needed, or if they are
needed, they can be computed from the time the flight left New York and other state
information, for example, the speed and direction of the aircraft.

Figure 2.2(b) shows a space-time diagram for an event driven simulation. In this
figure, updates to state variables occur at irregular points in simulation time, namely
the simulation time of the events.

In an event-driven simulation, simulation time does not advance from one time
step to the next but, rather, advances from the time stamp of one event to the next.
From a computational standpoint, the simulation can be viewed as a sequence of
computations, one for each event, transforming the system across simulated time in a
manner representing the behavior of the actual system. For example, Figure 2.4
depicts the execution of a discrete-event simulation of air traffic in a single airport,
with events denoting the arriva, landing, and departure of different aircraft.

An event-driven simulation can emulate a time-stepped simulation by defining
events that happen at each time step, for example, events can be defined with time
samp 1, 2, 3, ..., assuming atime step size of one. In principal, a time-stepped
simulation may emulate an event-driven simulation by defining atime step size that
is the greatest common divisor among al the time stamps assigned to events in the
simulation. This will ensure that no event lies between two time steps. This may be
rather inefficient in practice, however, because many time steps may not contain any
computation to be performed.

A variation of the event-driven paradigm can aso be used for rea-time simula-
tions. One approach is to prevent simulation time from advancing to the time stamp
of the next event until wallclock time has advanced to the time ofthis event, that is, if
the time stamp of the next event is Ty simulation time is not advanced to T until
W25(T,,) reaches Ty where T, is the current value of wallclock time.

landed arrival departure|| arrival
@9:00 @9:16 @9:56 @10:10
i ) T |
k) ) I ]
r |' 1 1 L
9:00 915 9:30 9:45 10:00

simulation time N

Figure 2.4 Sequence of events in a discrete-event simulation. The arrival at 9:00 schedules
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2.4 DISCRETE-EVENT SIMULATION PROGRAMS

This book is primarily concerned with discrete event simulations. A sequential
discrete event simulation program typically utilizes three data structures (see Fig.
2.5):

1. The state variables that describe the state of the system (for example, Fig. 2.5
shows variables that will be used later in an example for simulating an airport;
briefly, these variables indicate counts of the number of aircraft that are flying
overhead and are on the ground, and the state of the runway).

2. An event list containing events that are to occur some time in the simulated
future (Fig. 2.5 shows the events depicted in Fig. 2.4; the event with time
stamp 9:56 is absent because it has not been created yet).

3. A global clock variable to denote the instant on the simulation time axis at
which the simulation now resides (in Fig. 2.5 the simulation has advanced to
simulation time 8:45).

I the clock variable contains avaue T, then this denotes the fact that all activitiesin
the physical system up to the time represented by T have been simulated, and
activities later than T have not yet been simulated. All events in the event list must
have atime stamp greater than or equal to T

Operationally, an event is usually implemented by a data structure that includes
the event's time stamp (for example, 9: 16 AM), some indication of the type of event
(for example, an aircraft arriving at an airport) and various parameters elaborating
more details of the event (for example, flight 396 arriving at LAX).

In the physical system, "events" such as an aircraft arrival "just happen." In the
simulated world, nothing happens unless the simulation computation makes it
happen. In other words, a mechanism is required to create new events. The
mechanism for creating a new event in the simulation is called scheduling an
event. For example, suppose that the simulation depicted in Figure 2.4 and Figure
2.5 now advances to simulation time 9:00 and the event at that time indicates flight
200 has landed. The simulation might now schedule anew departure event to denote
the fact that this aircraft departs again at 9:56. "Scheduling an event" in the
simulator is implemented by allocating memory for a new event, filling in the fields
for the time stamp, event type, and the associated parameters, and adding the event

state variables event list
Integer: In_The Air; 19:OO 1
Integer: On_The_Ground; 9.16
Boolean: Runway _Free; r- 1

IClOCkE 845

Figure 2.5  Principal data structures in a discrete-event simulation program.
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Simulation Application

* State variables

« code modeling system behavior
* 110 and user interface software

calsto R cals to event
schedule] handlers
events |Ir

Simulation Executive
* event list management
* managing advances in simulation time

Figure 2.6 Separation of the simulation program into the simulation application and
executive components.

to the event list data structure. Event scheduling is one way that simulation programs
can model causal relationships in the physical system.

We are now ready to describe the simulation program. This program can be
divided into two components (see Fig. 2.6). The lower piece is the simulation
executive that maintains the event list and clock variable. Thisportion is independent
of the physical system. Commercial vendors often sell the simulation executive as a
"general purpose" component that can be used to simulate avariety of systems. The
upper portion includes the state variables and the software for modeling the physical
system. This part is called the simulation application, and it is intimately tied to the
physical system. In its simplest form, the simulation executive need only provide a
single primitive to the simulation application: a procedure for scheduling events.

The program executed by the simulation executive is shown in Figure 2.7. The
heart of the simulation executive is the event-processing loop that repeatedly
removes the event containing the smallest time stamp from the event list, advances
the simulation time clock to the time stamp of this event, and then calls a procedure
defined in the simulation application that processes the event. This procedure for
processing the event may do two things:

1 Modify state variables to model changes in the state of the physical system
that result from this event.

2. Schedule new events into the simulated future.

while (simulation is in progress)
remove smallest time stamped event from event list
set simulation time clock to time stamp of this event

execute event handler in application to process event

WALFR A1 aMBEn e@ntrprocessing loop in a discrete-event simulation program.
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There are two important points in this discrete event simulation that are worth
highlighting, because they will become very important when we consider execution
on paralel and distributed computers. Both relate to ensuring that the simulation
faithfully reproduces causal relationships in the physical system. First, the ssmulation
application can only schedule events into the simulated future, namely the time
stamp of any new event must be at least as large as the current time of the simulation.
Second, the simulation executive aways processes the event containing the smallest
time stamp next. These two properties ensure that the simulation will process events
in time stamp order, and the simulation time clock never decreases in value during
the execution of the ssimulation. This is important because it ensures that an event
computation at time T cannot affect any event computation with a smaller time
stamp. This is certainly a good thing, because, if this were not the case, it would be
possible for future events to affect those in the past!

25 AN EXAMPLE APPLICATION

Consider a simulation of air traffic arriving and departing at an airport. Assume that
the airport contains a single runway for incoming arcraft.. Such a simulation might
be used to collect statistics such as the average number of arcraft: waiting to land or
the average amount of time each arcraft: must wait; however, we will ignore the
computation of such statistics here in order to focus on the event processing
mechanism. In this example, the state of the airport is characterized by three state
variables:

1. In_The_Air indicates the number of arcraft: that are in the process of
landing, or are circling, waiting to land.

2. On_The_Ground indicates the number of arcraft: that have landed and are
either at a gate, or traveling to or from a gate.

3. Runway_Free indicates whether or not the runway is currently being used
by alanding arcraft..

These state variables and the observation that the state of the simulation can only
change when an event occurs suggest the types of events that are needed.
Specifically, In_The_Air is incremented by one when a new arcraft: arrives at
the airport, and is decremented by one when an arcraft: lands. Similarly On_The_
Ground is incremented when an aircreft: lands, and is decremented when an aircraft:
departs: Finally:"Runway=Freewillsbecome FALSE when an arcreft: arrives ifthe
runway was not already in use, and becomes TRUE when an arcraft: lands and there
are no additional aircraft waiting to land. Departing aircraft are not included in the
In_The_Air sate variable. Thus three types of events are defined for this
simulation:
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1. An arrival event denotes the arrival of a new arcraft: at the airport.
2. A landed event denotes that an arcraft: has landed.
3. A departure event denotes an arcraft: leaving to travel to another airport.

Arrival and departure events represent, respectively, the introduction and removal of
aircraft in the simulation.

. Upon arrival, each arcraft: must: (1) wait for the runway and land (assume that the
aircraft ges the runway for R units of time while landing), (2) travel to the gate and
unload and load new passengers (assume that this requires G units of time), and (3)
depart gng travel to another airport. Assume that Rand G are fixed, known

quantities. Tq simplify the model, queuing a the runway for departing arcraft:
will not be considered here.

/*

* Constants and other values:
Now: current simulation time (from simulation executive)
R tlme runway In use to land aircraft (constant)

* G = time required at gate (constant)

*

* State Variables:

* Integer In_The_Air: number landing/waiting to land

* Integer On_The Ground: number of aircraft within airport

; Boolean Runway_Free: TRUE if runway is not being used
*/Inltiallze these variables to 0, 0, and TRUE, respectively

Arrival Event:
In_The_Air := In_The_Air + 1,
/* compute time al'rcraft landed gnd dope uStng runway */
If (Runway_Free)
RunwaY_Free := FALSE;
Schedule Landed Event at time Now+R;

Landed Event:
/* update state for the aircraft that has landed */
In_The_Air := In_The_Air - 1;
On_The_Ground := On_The_Ground + 1;
Schedule Departure Event at time Now+G

[* land next aircraft if there is one */
if (In_The_ Air > 0)

Schedule Landed Event at time Now + R;
else

Runway_Free .- TRUE;

Departure Event:

WWARAT ARGy o On_The Ground - 1;

Fieur 2.8 Simulation annlication program for a gjnele arnort.
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The simulation application consists of the definitions of the state variables and
constants, and three procedures, Arrival, Landed, and Departure, one to
handle each of the three different types of events. As discussed previoudy, the
simulation executive repeatedly removes the smallest time-stamped event from the
event ligt, and calls the appropriate procedure for the type of event that was removed.
The simulation executive also defines a function called Now that returns the current
value of the Clock variable.

The code for this simulation application is shown in Figure 2.8. This program
closely follows the behavior of the airport that was just described. When an arrival
event occurs, In_The_Air is incremented, and if the runway is free, the aircraft
begins to land. This is accomplished by setting Runway_Free to FALSE and
scheduling a L anded event R time units into the future. 1 the runway is not free, no
further action is taken. The Landed event procedure decrements In_The_Air
and increments On_The_Ground to reflect the new status of the aircraft, and
schedules a Departure event to represent the find departure of the aircraft from
the arport. If there are additional aircraft waiting to land, the Landed event
procedure aso schedules anew L anded event to model the next aircraft landing. |f
there are no more aircraft waiting to land, the runway is marked as being free by
setting Runway_Free to TRUE. Finaly the Departure event procedure simply
decrements On_The_Ground to represent the fact that the airport has one fewer
aircraft.

It may be noted that in this simple example, no queueing of departing aircraft is
modeled. It is straightforward to extend the model to include this aspect, s this is
left as an exercise for the reader.

The above program models the movement of aircraft through the airport but does
not provide any means for generating new aircraft, that is, generating new Arr ival
events. This could be accomplished by augmenting the Arri val event handler
procedure so that each arrival event schedules a new arrival event | time units into
the future, where | is the interarrival time, or time between arriving aircraft. | might
be selected by invoking arandom number generator, that is, a procedure that selects
a number in accordance to some probability distribution. Rather than scheduling
new arrival events in this fashion, here, we will assume that the event list is
initialized to contain an arrival event for each aircraft that will pass through the
airport in the entire simulation. Thiswill facilitate discussions later when we expand
this sequential simulation program to one that can execute on parallel or distributed
computers.

A sample execution ofthis program is depicted in Figure 2.9. This figure shows a
space-time diagram to illustrate how the state variables are modified by the different
events. For example, the computation for the Arrival event increments the

In_The Air variable and sets Runway Free to FALSE. It then schedules a
Landed event R time units into the future. The Landed event decrements
In_The_ Air, increments.«On_The Ground, s&ts Runway_Free to TRUE,
and schedulesia Departure event: Finally the departure event decrements On_The_-
Ground.
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Arrival Landc(d Departurc
* event event event
state variables ;’<—B—>:,‘7 G —
In_The_Air O 0
On_The_Ground 0 (6]

Runway_Free TRUE FALSE |TRUE

simulation time

Figure 29 .Space-time diagram depicting an arcraft arriving, landing, and then departing a
an drport usmng the SmulalOn application shown in Figure 2.8.

2.6 STARTING AND STOPPING THE SIMULATION

There are two remaining aspects of the simulation execution that need to be
discussed: starting and stopping the simulation. The simulation begins by initializing
the state variables, and generating initiadl events. Initialization of variables is
accomplished by traditional programming techniques. The initia events may be
creaed .by defining an “imtlahizatiOn event” with time stamp equa to a simulated
time. pnor to the beginning of the actua simulation. The simulation application
provides a procedure that processes this initialization event by scheduling all other
Iitld events reqUired by the simulation.

There are several techniques for terminating the execution of the simulation A
“stop simulation” event may be used that is defined to be the last event processed' by
the simulation, even if there are other scheduled events remaining in the event list.
Alternatively, an "end simulation time" may be defined that indicates the simulation
is terminated when the simulation clock is about to exceed this time; that is, the
simulation ends when the n.ext event removed from the event list carries atime stamp
larger than thiS time. In either case, the simulation will dways terminate after an
event computation if there are no events in the event list.

2.7 PARALLEL/DISTRIBUTED SIMULATION EXAMPLE

A pad.ld or a distributed simulation is typically composed of a collection of
sequential simulatlOns, each modeling a different part of the physical system and (at
least potentially) executing on adifferent processor. Borrowing terminology from the
padld. discrete event Simulation community, let us refer to each sequentia

SimulalOn as a logicaf process or LP. In other contexts, each sequential simulation
WwWw.mahnaraa.com
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might be referred to as a simulator. Thus the physical system can pe viewed as g
collection of physical processes that interacts i some fashiOn with each physical
process being modeled by a logical process.

As each logical process executes, it processes events and generates new events. It
may be the case that an event that is generated within one LP is relevant to one.or
more other LPs. When this happens, a message is sent to the other LPs to notify
them of the event.5 Viewed another way, interactions between physical processes 21€
modeled in the distributed simulation by passing messages among the correspondllig
logical processes. . . . . .

For example, let us consider extending the alfport dmulatiOn described earher to
model air traffic in the United States. The U.S. air traffic network can be viewed as.a
collection of airports that interact by having aircraft fly between them. An act.ua.l ar
traffic system might also include other interactions such as radlO transmissions
between aircraft and airports, but these interactions will be ignored here to simphfy
the discussion. .

The physical system consists of three airports. JFK in New York, LAX Ijos
Angeles, and ORD in Chicago. In this example, each airport is modeled by alf)glc?l
process identical to that shown in Figure 2.8, except the departure event procedure IS
modified as described next. )

The original model shown in Figure 2.8 assumed that once an aircraft d?Paf:‘eqa it
|eft the simulation and was never heard from again. Here, we modify thi'S SmuiatiOn
by observing that an aircraft departure results in a subsequent arrival event at another
airport. To realize this change, only the procedure for processing departure events
needs to be modified. The modified procedure IS shown in Figure 2.10. Rather than
discarding departing aircraft, each departure event generates a new arrival ev.ent for
another airport. This is accomplished by sending a message to the LP modeling the
destination airport requesting that it schedule a new arrival event with time stamp
equal to the time of departure plus the amount of time required to fly between the
two airports. .

This completes our example for now. With the small change descnbed abov.e, we
have now constructed a smple distributed simulation program for modehng a
collection of airports. This example was intended to illustrate that distributed
simulation is a direct extension of well-known concepts in the sequential SmulatlOn
world. One can view a parallel/distributed simulation as a collection of sequential
simulation programs that exchange messages to notify other simu.laions of ?Vents-
While in this example each logical process in the distributed executlOn was a discrete
event simulation program, one could easily replace each LP with atime stepped or a

continuous model. .
At this point we should alert the reader to the fact that the. above example |g

deceptively simple) As will be seen'in later chapters, extendlllg the underlYillg

5Th  ralld discrete event simulation literature often views events and messages as being synonymous,

. 1 k . 1 |
ThiSh3w is not.taken here because it may be that a smgle event may be relevant to severa ot er oglca
processes. It isimore natural-to.view-this situation as a single event resulting in several LPs being notified
of the event via messages.
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Departure Event:
On_The_Ground := On_The_Ground - 1;
/*

* notify next airport of a new arrival event.

* Source = ID of this airport

* Dest = ID of destination airport

* Flight_Time[S,D] = time to fly from S to D
*/
Send Message to Dest to schedule an arrival event at

time Now+Flight_Time[Source,Dest]

Figure 2.10 Modified departure event procedure for distributed simulation.

simulation executive to parallel and distributed environments introduces many
nontrivial problems.

2.8 WORLD VIEWS AND OBJECT-ORIENTED SIMULATION

The approach discussed above for modeling air traffic is known as the event-oriented
world view. In this approach the focus of the model is on events, and how they affect
the dtate of the simulation. Simulation programs using this world view consist of
procedures or event handlers, one for each different type of event that can occur in
the simulation. The event-oriented world view will be used throughout much of this
book because it is, in many respects, the "machine language" of discrete-event
simulation. By this we mean it defines the fundamental mechanisms, specifically the
mechanisms for handling events and advancing simulation time that are used by the
other techniques described later in this chapter. We conclude this section with a
discussion of another important world view, the so-called process-oriented approach,
and a programming approach called object-oriented simulation.

For completeness we mention one other world view, known as the activity-
scanning approach, that is aso sometimes used. This is a variation on the time-
stepped mechanism. The simulation program consists of a collection of procedures,
with a predicate associated with each one. At each time step, each predicate is
evaluated, and the associated procedure is executed if its predicate evaluates to

TRUE. This process repeats until no predicate evaluates to TRUE. When this happens
the simulation advances to the next time step.

2.8.1 Simulation Processes

Consider the air traffic simulation described earlier in this chapter. Imagine that you
are\aployElyaraenoenaial airline company to modify this simulation program to
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include more detail concerning actions performed by the pilot of an aircraft (for
example, details concerning procedures for takeoff and landing or for changing
altitude during a flight). While this is a manageable task for the simple simulation
shown in Figure 2.8, this would be much more challenging if the simulation were
much larger and more complex (for example, containing tens or hundreds of
thousands of lines of code and hundreds of different event procedures). In order
to make modifications such as those suggested above, you must locate al of the code
describing the aircraft's behavior (for example, take off, landing, and travel between
airports, and modify these portions of the program). The problem is the behavioral
description for a single aircraft is scattered across the entire program in the different
event procedures, and it is not immediately clear from the code what sequence of
events describes the behavior of a single aircraft. It is difficult to understand and
modify the model for a single aircraft because the simulation program is not
organized in a way to alow one to separate the aircraft's behavior from that of
other types of aircraft (for example, flown by different airlines) and other activities
that go on in the airport.

A process-oriented simulation attacks this problem through an abstraction called
the simulation process. A simulation process is intended to model a specific entity in
the simulation with awell-defined behavior (for example, an aircraft in the air traffic
example). The behavioral description of the entity is encapsulated by the process.
This description describes the actions performed by the process throughout its
lifetime,

For example, in the simulation for a single airport, the lifetime of an aircraft can
be described as follows: First it waits for the runway to become free. Then it lands,
using the runway. It next moves to the gate to load and unload passengers, and then it
departs. The simulation program for an aircraft process is depicted in Figure 2.11,
where it can be seen that the program directly reflects this word description of the
aircraft's behavior. This is in sharp contrast to the event-oriented description
described previoudy. The simulation program uses two key primitives:

1 Wait_Until (predicate). This construct causes the process to be
suspended (blocked while simulation time advances) until the specified
predicate, in this case the runway becoming free, evaluates to TRUE.

2. Advance_Time (T). This construct causes simulation time for the process to
advance by T units of simulation time. This construct is invoked to signify that
the entity is "busy" performing some activity for T units of time.

A key point is that the Wzit_Until and Time_Advance primitives cause simulation
time to advance. This is critical because the lifetime of the entity modeled by the
process is over acertain period of simulation time. By contrast, the "lifetime" of an
event procedure is a single instant in simulation time.

In addition to processes, process-oriented simulations often utilize the concept of
aresource. A resource is an abstraction that represents a shared entity for which one
or more processes compete. The runway in the air traffic simulation is an example of
a resource. The scenario described in Figure 2.11 where the aircraft waits until the
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* Constants and other values:
R time runway in use to land aircraft (constant)
G = time required at gate (constant)

State Variables:

* Integer In_The_ Air: number of landing or waiting to land
* Integer On_The_Ground: number of aircraft within airport

* Boolean Runway Free: TRUE if runway is not being used

* Initialize these variables to 0, 0, and TRUE, respectively

Process Aircraft:
/* simulate aircraft arrival, circling, and landing */

1 In_The_Air:= In_The_Air + 1;
2 Wait_Until (Runway_Free); /* circle */
3 Runway_Free:= FALSE; /* land */
4 Advance_Time(R);
5 RunwaY _Free:= TRUE;

/* simulate aircraft on the ground */
6 In_The_Air:= In_The_Air - 1;
7 On_The_Ground:= On_The_Ground + 1;
8 Advance_Time(G);

/* simulate aircraft departure */
9 On_The_Ground:= On_The_Ground - 1;

Figure 211 Process-oriented smulation of arport.

[€SOUrce hecomes available (the Wai t_Until (RunwaY _Free) statement), acquir-
mg the resource (the Runway_Free: = FALSE; statement) and releasing the
resource (the Runway_Free: = TRUE; statement), is sufficiently common that
primitives for performing these functions are often included in alibrary, or built into
the simulation language itself Conceptualy a process-oriented simulation can be
viewed as collections of processes, each advancing in a somewhat autonomous
fashion through simulation time and interacting with other processes by competing
for shared resources.

As mentioned earlier, process-oriented simulations are typically implemented "on
,tOP of" event-oriented simulation mechanisms. Specifically, process-oriented simu-
lahons use the- same event list and time advance mechanism defined for the event-
oriented paradigm but provide additional mechanisms for managing simulation
processes. The lifetime of a simulation process can be viewed as a kind of miniature
event-oriented simulation in that it consists of a sequence of event computations.
Simulation time for the process only advances between these event computations.
Theandi fiseanes isdhabiman event-oriented simulation, the event computation is
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encapsulated into a procedure (i.e, the event handler). In a process-oriented
simulation the event computations are blocks of statements within the code for the
simulation process, and they are terminated by a cal to a primitive to advance
simulation time, i.e, the Wait_Unti 1 and Advance_Time statements. In the
simulation in Figure 2.11, there are four event computations:

1. Statements 1 and 2 modeling the aircraft waiting to land.

2. Statements 3 and 4 modeling the aircraft landing.

2. Statements 5, 6, 7, and 8 modeling the aircraft on the ground.
3. Statement 9 modeling the departure.

The event-oriented paradigm provides a very straightforward mapping of the
simulation program to standard programming language constructs; that .is, each
event handler could be smply implemented as a procedure. The mapplllg of a
simulation process to language constructs is somewhat more complex. One could
partition the simulation code into separate procedures and revert back to the event-
oriented style of execution. For example, a compiler or preprocessor could translate
the simulation code in Figure 2.11 into four procedures, PI, P2, P3, and P4, With
each procedure terminated by a call to a smulation primitive that results in
simulation time to advancing. This ensures that SmulaiOn time only advances
between calls to the procedures, which is identical to an event-oriented simulation.
The compiler could create an event handler for each process that js called whenever
an event pertaining to that process is removed from the event list. ThiS event handler
calls Pl the first time it is invoked, P2 the second time, and P3 and P4, respectiVdly,
on the fina two invocations. The Advance_Time (T) primitive schedules a new
event T time units into the future, thereby guaranteeing the event handler for the
process will be called again at the precise simulation time when the process should
resume execution. The Wait_Until primitive updates a data structure withill the
simulation executive to indicate the condition on which the process is waiting. Prior
to processing each event, the simulation executive must check to determine which
waiting processes are how able to resume execution, and schedules an event (at the
current simulation time) to "wake up" one such process. Ifthere are severa that are
eligible to execute (for example, there may be several processes waiting for a
resource that has now become free), the simulation executive must use Some
prioritization rule to determine which process should be resumed. Of course, thiS
is something that the modeler must have control over, since it will usually affect the
simulation results, so a queueing discipline may be specified (for example, fird-
come-first-serve) to address this issue. .

The above discussion describes a typical implementation of a process-onented
simulation paradigm, with one exception. Suppose that a Wait_Until or
Advance Time primitive is called within a loop, or within a procedure called
by the simulation process. In this case, decomposing the code for the process illto a
sequence of.procedure calls! is.nat [so simple. For Situations such as these, a co-
routine mechani sm'(or equivalently, a “threading mechanism") is needed to transfer
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execution in and out of the process code. A co-routine mechanism is a facility that
allows a computation (for example, a simulation process) to stop and transfer
execution to another computation (the simulation executive). Later, the simulation
process can resume execution a exactly the point a which it had been stopped.

To summarize, the principal points concerning process-oriented simulations are
as follows:

1. They provide a more convenient paradigm for developing simulation applica
tions for certain types of applications.

2. They can be implemented on top of the basic event-oriented style of execution
that was described earlier.

3. They incur a certain amount of additional computational overhead to control
and manage the execution of simulation processes.

2.8.2 Object-Based and Object-Oriented Simulations

Many physical systems can be viewed as collections of components (aircraft,
controllers, airports, etc.) that interact in some fashion. Thus it is natural to model
these systems as collections of interacting objects. For this reason, object-based and
object-oriented paradigms have become popular modeling paradigms.

An object consists of a collection of fields (state variables or attributes) and a set
of methods, typically implemented as procedures, that model the behavior of the
component. Objects are created (instantiated) dynamically during the execution of
the program, enabling one to easily model the creation of new components (for
example, aircraft in an air traffic simulation) during the execution of the simulation.
Objects may initiate execution (invoke methods) of other objects or request (query)
the current value of another object's fields. Logically, invoking a method can be
viewed as sending a message to the object requesting that the method be executed.
When executed on a single computer, invoking an object's method can be
implemented by a simple procedure cal. On a paralel or distributed computer,
messages are used to invoke methods for objects that reside on another computer.

The fields of an object can only be modified by that object's methods. This
principal, called encapsulation, greatly simplifies software maintenance and debug-
ging. Systems that require the simulation to be structured as collections of
interacting objects are often referred to as object-based systems. Object-oriented
systems go a step further by providing a capability called inheritance to characterize
relationships among collections of similar, but not identical objects.

A key aspect of object-oriented languages is that they allow one to define new
types of objects in terms of aready defined object types. The new object type is said
to inherit the properties (fields and methods) of the original. However, the new object
type, called the derived type, may replace these properties with new ones, or extend
the object type to include entirely new fields and methods. This alows, for instance,
one to define a generic object type and define specific object types that elaborate
uporvihe\orgaaiakase,agpa For example, the base type might be vehicle objects
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with fields indicating the vehicle's current position, direction, and velocity. An
aircraft object can be derived from this base type that extends this definition to
include an atitude field.

The derived type may replace or overload methods in the base object type. Both
the derived type and the base type use the same name for the method. Thus an object
can invoke the "move" method for a vehicle object without being concerned
whether the vehicle is an aircraft or an automobile. The move method for an aircraft
might cause it to climb 1000 feet, while that of the automobile causes it to travel
another 10 minutes down the freeway. The underlying system ensures that the
correct method is invoked at runtime. Replacing methods in this fashion alows one
to extend existing libraries and tailor them to suit the purposes of the user. The fact
that different object types can use the same name for their move method is important
because it allows new object types to be defined and incorporated into the simulation
program without modifying the object that invokes the method, thereby simplifying
the addition of new types of objects to the program. The ability to have different
methods with the same name is called polymor phism.

It should be obvious that object-based and object-oriented languages are natural
vehicles for implementing discrete-event simulations. This should come a no
surprise because many of the ideas in object-oriented simulation can be traced
back to a language called Simula that was designed for discrete event simulation.
Methods can be used to implement event procedures. Encapsulation of the state of
an object supports parallel and distributed simulations because it discourages the use
of global variables that may be difficult to implement on parallel and distributed
computers which do not provide shared memory. Moreover the approach of
constructing simulation programs as collections of objects that interact in some
fashion is a natural way to view systems of interacting components.

2.8.3 Query Events and Push versus Pull Processing

When simulating collections of interacting objects, such as aircraft and airports, it is
common for one object to need to collect state information from other objects. For
example, in the simulation of the three airports discussed earlier, one might define a
fourth object that monitors traffic conditions at al three airports, and dispatches
recommendations (for example, rescheduling of flights) to these airports. This
monitor object might request the current value of the ID_The_Air dtate variable
at each of the other airports to determine which airports are congested. This might be
implemented by invoking an "Ask" method at each of the airport objects requesting
the value of this variable. In a sequential simulation, this could be implemented by a
simple procedure call for each airport. In adistributed simulation, the monitor object
and the airport objects may reside on different processors, so messages must be sent
to retrieve the requested information. Adhering to our paradigm of logical processes
exchanging time-stamped events, requesting the value of the ID_The_Air dtate
variable is. viewed a scheduling an event (called a query event) for each airport
process withitime stamp egual.to the current simulation time of the monitor object.
The event:handl er.for this.event.(@method in the airport object) generates areply by
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scheduling a new event at the monitor object containing the requested value. The
time stamp of this reply is the same as the query.

The approach described above using query events is sometimes referred to as
"pull processing" because each LP is responsible for "pulling” in the information it
needs when it needs this information. The drawback with pull processing in
distributed simulations is that two message transmissions are required to collect
information from another processor. Further the process requesting the information
must usually block until the query has been satisfied.

An alternative approach is to have the airport processes automatically provide the
monitor process the value of the required state information whenever the variable
changes. This is sometimes called "push processing” because the LP that holds the
dae variable "pushes’ changes to the variable to other processes. This reduces the
two messages required for each transmission of state information in the pull
approach to only one, and it eliminates forcing the monitor process to block while
waiting for the response of its queries. Push processing may require more message
transmissions than are really needed, however, because the source of the data cannot
know if the user of this information requires each new value of the state variable.

2.8.4 Event Retraction

Another commonly used mechanism is to retract (sometimes called "cancel" in the
discrete-event simulation literature; however, event cancellation is used to denote an
entirely different mechanism here, as will be discussed in Chapter 4) previously
scheduled events. Fundamental to the discrete event simulation paradigm described
earlier is the notion of scheduling events into the simulated future. This is, in
essence, predicting what will happen (for example, once an aircraft lands, we can
predict that it will later depart again). In some circumstances this may be difficult to
do with absolute certainty. In that case the simulation program may schedule events
that it believes will occur when the event is scheduled, but later it will retract the
scheduled event should this belief tum out to be incorrect.

For example, again consider the air traffic example described earlier. Suppose that
We now introduce a "gremlin" process that generates airport closings (for example,
because of bad wesather) a randomly selected points in time. An airport closure
could pe easily implemented by the gremlin process scheduling a "closing" event at

an airport with a time stamp indicating when the airport closes. When an airport
cI osing event is processed by an airport, it may have other events already scheduled,
based on the assumption that the airport did not close. For instance, there may be

abéﬁure events scheduled for aircraft that have recently landed. The event retraction
mechanism can be used to "unschedule" these departure events, and reschedule new
departure events based on the re-opening time of the airport. Without the ability to
:etract previously scheduled events, the simulator would need to devise a way to
Ignore the now Invalld departure events when they are processed. It is possible to do
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29 OTHER APPROACHES TO EXPLOITING CONCURRENT
EXECUTION

This book is primarily concerned with parallel and distributed simulation techniques
that are composed of simulation models for different parts of the system executing
concurrently on different processors. For completeness, other approaches to exploit-
ing concurrency in simulation problems are mentioned. One approach that has been
proposed is to use dedicated functional units to implement specific sequential
simulation functions, for example, event list manipulation and random number
generation. This method does not scale to large simulation models, however, because
no provision is made to partition large models into smaller submodels executing
concurrently on different processors.

Another well-known approach is to execute independent, sequential simulation
programs on different processors. This replicated trials approach is useful if one is
performing long simulation runs to reduce variance, or if one is investigating the
behavior of a system across a large number of different parameter settings. The
replicated trials approach is avery simple and useful technique to exploiting multiple
processors, and one that is widely used today. A disadvantage of this approach is that
each processor must have enough memory to hold the entire simulation program.
Also this approach is obviously not well suited for interactive virtual environments.
Findly it is not suitable if results of one experiment are needed to determine the
experiment that should be performed next.

2.10 ADDITIONAL READINGS

Discrete-event simulation is a mature field that dates back at least to the 1950s. The
field includes numerous areas such as model design and development, programming
languages, experimenta design, analysis of output, and random number generation,
to mention afew. The focus of this book is limited to one aspect of this field, namely
model execution on parallel and distributed computing systems. Several good
textbooks giving broader coverage of the field are available; for example, see Law
and Kelton (1991); Fishwick (1994); and Banks, Carson Il et d. (1996).

The space-time view of simulation programs, and different execution mechanisms
(both sequential and parallel) for "filling in" the graph is described in Chandy and
Sherman (1989) and elaborated upon in Bagrodia, Liao et d. (1991). The functional
decomposition approach where different processors of aparallel computer are used
to execute different portions of a sequential simulation (event list processing,
random number generation, etc.) is described in Comfort (1984), and Davis,
Sheppard et d. (1988). Use of the replicated tria approach to reduce the time of
long simulation runs are described in Biles, Daniels et d. (1985), Heidelberger
(1986), Glynn and Heidelberger (1991), and Sunderam and Rego (1991).

N PART I

PARALLEL AND DISTRIBUTED
DISCRETE-EVENT SIMULATION
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I CHAPTER 3

Conservative Synchronization
Algorithms

This chapter and the three that follow are concerned with the execution of analytic
simulation programs on parallel and distributed computers with the principal goal of
reducing execution time. The emphasis is on as-fast-as-possible execution; however,
as was described in the previous chapter, the simulation program could be paced to
execute as areal-time (or scaled real-time) simulation if the execution is fast enough
to keep up with (scaled) wallclock time.

As discussed in the previous chapter, the physical system is viewed as being
composed of some number of physical processes that interact in some fashion. Each
physical process is modeled by a logica process (LP), and interactions between
physical processes are modeled by exchanging time-stamped messages between the
corresponding logical processes. The computation performed by each LP is a
sequence of event computations, where each computation may modify state vari-
ables and/or schedule new events for itself or other LPs.

At firgt glance this paradigm would seem to be ideally suited for parallel/distrib-
uted execution; one can simply map different logical processes to different
processors and let each LP execute forward, event by event, and exchange messages
(that schedule events for other LPs) as needed. Unfortunately, there is a catch. Each
logical process must process all of its events, both those generated locally and those
generated by other LPs, in time stamp order. Failure to process the events in time
stamp order could cause the computation for one event to affect another event in its
past, clearly an unacceptable situation. While we saw in Chapter 2 that time stamp
ordered event processing was easily accomplished on a sequential computer by using
a centralized list of pending events, this is not so easily accomplished when
execution is distributed over more than one processor. Errors resulting from out-
of-order event processing are referred to as causality errors, and the general problem
of ensuring that events are processed in a time stamp order is referred to as the
synchronization problem.

This chapter describes one major class of algorithms for addressing the synchro-
nization problem, namely conservative synchronization protocols where each LP
strictly avoids processing events out of time stamp order. The two chapters that
folldWWVdeddniadBaraadte@stive approach called optimistic synchronization where
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errors are detected during the execution, and some mechanism is used to recover
from them.

31 SYNCHRONIZATION PROBLEM

Consider a simulation program composed of a collection of logical processes
exchanging time-stamped messages. Consider the execution of this program on a
sequential computer. The sequential execution ensures that al events across dl of
the logical processes are processed in time stamp order. When the simulation is
distributed over multiple processors, a mechanism is required for the concurrent
execution to produce exactly the same results as the sequential execution. The goa
of the synchronization algorithm is to ensure that this is the case. It is important to
realize that the synchronization algorithm does not need to actually guarantee that
events in different processors are processed in time stamp order but only that the end
result is the same &s if this had been the case.

Consider parallelization of a simulation program that is based on the logical
process paradigm discussed above. The greatest opportunity for parallelism arises
from processing events from different LPs concurrently on different processors.
However, a direct mapping of this paradigm onto (say) a shared-memory multi-
processor quickly runs into difficulty. Consider the air traffic example discussed in
the previous chapter with three LPs that model LAX, ORD, and JFK. Consider the
concurrent execution of two arrival events in this example. Specificaly, E, & the LP
for ORD has atime stamp of 10, and E,, a LAX with time stamps 20. IfE  affects
E,, (for example, E o might write into a state variable that is read by E,j), then E 4
must be executed before E,,.

To avoid scenarios such as this, the restriction is made that there cannot be any
state variables that are shared between logical processes. The state of the entire
simulator must be partitioned into state vectors, with one state vector per LP. Each
logical process contains a portion of the state corresponding to the physical process
it models, as well as aloca clock that denotes how far the process has progressed in
simulation time.

Although the exclusion of shared state in the logical process paradigm avoids
many types of causality errors, it does not prevent others. Again, consider two arriva
events, E1o a logical process LPorp with time stamp 10, and E,, a LPLax withtime
stamp 20 (see Fig 3.1). IfE , schedules anew event E ¢ for LP, o4 that containstime
stamp 15, then E 5 could affect E,,, necessitating sequential execution of all three
events. For example, E,. might denote the arrival of an aircraft at LAX, delaying the
landing of the flight arriving at time 20.

We impose the following local causality constraint on each logical process to
avoid errors such as this:

Local Causality Constraint’ A discrete-event simulation, conslstmg of logical
processes (LPs) that interact jexclusively by exchanging time stamped messages
obeys the Iocal causality-constraint if and only if each LP processes events in
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LPLAX 1Ess !

10 5 20 simulation time

Figure 31 Event E affects Ex by sheduling a third event E,, which modifies a sete
variable used by Ey- This necessitates sequentia execution of dl three events.

It is clear that if one violates the local causality constraint, causality errors may
ocour. However, one could ask the opposite question. If each LP in the parallel
smulation adheres to the local causality constraint, is this sufficient to guarantee that
the simulation is "correct"? It turns out that the answer to this question is yes, as
stated 111 the following observation:

Observation If each LP adheres to the local causality constraint, then the
parallel/distributed execution will yield exactly the same results as a sequential
executlOn of the same simulation program provided that events containing the same
time stamp are processed in the same order in both the sequential and parallel

executlOn. Events containing the same time stamp are referred to as simultaneous
events.

Note that this observation does not guarantee that the simulation produces useful
or even meaningful results. Any simulation model must be validated before its
results can be trusted. From the standpoint of synchronization, "correctness' only
goes 0 far as to say that the parallel execution will produce identical results as a
sequential  execution of the same program. Also it should be pointed out that
adherence to this constraint is sufficient, but not always necessary, to guarantee that
no causality errors occur. 1t may not be necessary because two events within asingle
LP may be independent of each other, in which case processing them out of time
stamp sequence is acceptable.

. Operationally one must decide whether or not E,, can be executed concurrently
Wwith £,,. But how does the simulator determine whether or not E,, affects Ex
without actually performing the simulation for E ,? This is the fundamental dllemma
that myst be addressed. The scenario in which E,, affects E,, can be a complex

Sefuence of events, and It IS critfcally dependent on event t|me stamps.

Assume that the smulati.on consists of N logical processes, LPo ..., LPN-1*
Clock; refers to the current simulalOn time of LP;: when an event is processed, the
pro&m&, i ally advanced to the time stamp of that event. If Lp,
sends a misﬂ;ﬂge%ﬁ% uring the simulation, alink is said to exist from LP; to LP,.
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Historically the first synchronization algorithms were based on so-called conser-
vative approaches. The fundamental problem that conservative mechanisms must
solve is to determine when it is "safe" to process an event. More precisdly, If a
process contains an unprocessed event E, with time stamp T, (and no other with
smaller time stamp), and that process can determine that it isimpossible for it to later
receive another event with time stamp smaller than Ty, then E 5 is said to be safe
because one can guarantee that processing the event now will not later result in a
violation of the local causality constraint. Processes containing no "safe" events
must block. As will be seen momentarily, this can lead to deadlock situations if
appropriate precautions are not taken.

3.2 DEADLOCK AVOIDANCE USING NULL MESSAGES

Let us assume that one statically specifies the links that indicate which logical
processes may communicate with which other logical processes. Further assume that
(1) the sequence of time stamps on messages sent over alink is nondecreasing, (2)
the communications facility guarantees that messages are received in the same order
that they were sent (software to re-order messages is necessary if the network does
not guarantee this property), and that (3) communications are reliable (i.e., every
message that is sent is eventually received). This impliesthat the stream of messages
arriving on a given link will have nondecreasing time stamp values. It aso
guarantees that the time stamp of the last message received on an incoming link
is a lower bound on the time stamp of any subsequent message that will later be
received on that link.

Messages arriving on each incoming link can be stored in a first-in-first-out
(FIFO) queue, which is dso time stamp order because of the above restrictions.
Here, we ignore "local" events that are scheduled by an LP for itself. In practice,
processing of these events must be interleaved with the processing of messages from
other LPs 0 that al events are processed in time stamp order, however, this is easy
to accomplish.® Each link has a clock associated with it that is equal to the time
stamp of the message at the front of that link's queue if the queue contains a
message, or the time stamp of the last received message if the queue is empty. For
example, a snapshot of the queues for the JFK logical process in our airport example
is shown in Figure 3.2. This logical process is guaranteed that any subsequent
message sent to it from ORD has atime stamp of at least 5 and that any subsequent
message from LAX has a time stamp of at least 9. - —

A program for executing incoming messages in time stamp order 1s shown m
Figure 3.3. Because messages in each FIFO queue are sorted by time stamp, the .LP
can guarantee adherence to the, local causaity constramt by repeatedly processmg
the message containing the smallest time stamp, so long as each queue contains at
least one message. | f one of the FIFO queues becomes empty, the LP must wait until

6 Local events colld be placed in a separate FIFO queue that is similar to the others except the LP should
not block if this queue becomes empty.
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Figure 3.2 Snapshot of the logical process modeling JFK.

J.

a new message is added to this queue because a message could later arrive that
contains a time stamp as small as the message it just removed and processed from
that queue. The LP could process messages in other queues containing the same time
samp as the one it just processed; however, it cannot process any messages
containing a larger time stamp. In this way the protocol shown in Figure 3.3
guarantees that each process will only process events in nondecreasing time stamp
order, thereby ensuring adherence to the local causality constraint.

For example, consider the air traffic simulation described earlier. As shown in
Figure 3.2, each airport LP will have one queue to hold incoming messages from
each of the other airports that are simulated. Again, assume that there are only three
airports: LAX, ORD, and JFK. Consider the queues in the JFK process. The queue-
holding messages from ORD contains messages with time stamps 4 and 5, and the
queue for LAX has messages with time stamp 2, 8, and 9. The JFK process will now
process arrival messages in the following order: 2 (LAX), 4 (ORD), and 5 (ORD).
Assuming that no new messages have been received, the JFK simulator will block at
this point, even though there are unprocessed messages with time stamps 8 and 9
from LAX. The LP must block because of the possibility that a new message will
later arrive from ORD with time stamp less than 8. As mentioned earlier, we can
only guarantee the next message has a time stamp of at least 5.

A cycle of empty queues could develop such as that shown in Figure 3.4 where
each process in that cycle must block. The simulation is now deadlocked. In Figure
3.4 the JFK LP iswaiting to receive a message from ORD, ORD iswaiting for LAX,
and LAX is waiting for JFK. Because no logical process can safely process any
event, the simulation is frozen in this state, unable to advance forward, even though

while (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped message M from its FIFO
clock := time stamp of M
process M

wivovrash ariia @espren of central event processing loop for a logical process.
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ORD
(waiting
on LAX)

LAX , > FK

(waiting (waiting
on JFK) on ORO

Figure 34 Deadlock situation. Each process is waiting on the incoming link containing the
smalest link clock vaue because the corresponding queue is empty. All three processes are
blocked, even though there are event messages in other queues that are wating to be processed.

there are severa events that have not yet been processed. In genera, if there are
relatively few unprocessed event messages compared to the number of links in the
network, or if the unprocessed events become clustered in one portion of the
network, deadlock may occur frequently.

This deadlock situation can be broken as follows: Suppose that the minimum
amount of time to fly from one airport to another is 3 units of simulation time, and
JFK is a simulation time 5. This implies that any message JFK sendsto LAX in the
future must have atime stamp of at least 8 (i.e, its current time plus the minimum
flight time to reach LAX). This information is not sufficient for LAX to safely
process its next message (with time stamp 10). However, because LAX now knows
its next event must have time stamp of at least 8, any message sent from LAX to
ORD must have atime stamp of a least 11 (i.e., 8 plus the minimum flight time to
reach ORD, or 3 units of simulation time). Because ORD is now guaranteed any
future message that it will receive from LAX must have a time stamp of 11, it can
safely process its message with time stamp 9, thus breaking the deadlock.

Some mechanism is required for an LP to indicate to other LPs alower bound on
the time stamp of messages it will send that LP in the future. Null messages can be
used for this purpose. Null messages are used only for synchronization, and do not
correspond to any activity in the physical system. In general, a null message with
time stamp T, that is sent from LPa to LPg is essentially a promise by LPa that it
will not send amessage to L Py carrying atime stamp smaller than Ty How does a
process.determine the time, stamps.of.the;null messages it sends? The clock value of
each incoming link provides a lower bound on the time stamp of the next
unprocessed event that will' be removed from that link's buffer. When coupled
with knowledge of the simulation performed by the process (for example, the
minimum time for an aircraft te fly from one airport to another), this incoming
bound can be used to determine a lower bound on the time stamp of the next
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outgoing message on each output link. Whenever a process finishes processing an
event, it sends a null message on each of its output ports indicating this bound; the
receiver of the null message can then compute new bounds on its outgoing links,
send this information on to its neighbors, and so on. It is typically up to the
application programmer to determine the time stamps assigned to null messages.

This is the essential idea behind the "null message” or Chandy/Misra/Bryant
algorithm (named after its inventors). One question that remains is when should null
messages be sent? One approach is to send a null message on each outgoing link
after processing each event. This guarantees that processes always have updated
information on the time stamp of future messages that can be received from each of
the other processes. Using this approach, the algorithm shown in Figure 3.3 can be
revised to yield the algorithm shown in Figure 3.5. It should be observed that
incoming null messages are processed exactly the same as other messages; that is,
the LP's clock is updated, but no application code is executed to process the
message.

An alternative approach to sending a null message after processing each event is a
demand-driven approach. Whenever a process is about to become blocked because
the incoming link with the smallest link clock value has no messages waiting to be
processed, it requests the next message (null or otherwise) from the process on the
sending side of the link. The process resumes execution when the response to this
request is received. This approach helps to reduce the amount of null message traffic,
though a longer delay may be required to receive null messages because two
message transmissions are required.

As mentioned earlier, the air traffic example relied on the fact that the minimum
amount of time for an aircraft to fly from one airport to another was 3 units oftime in
order to determine the time stamp of null messages. More generdly, this algorithm
relies on a quantity called lookahead, defined below.

Lookahead Ifalogical process a simulation time T can only schedule new events
with time stamp of at least T +L, then L is referred to as the lookahead for the
logical process.
while (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped message M from its FIFO
clock := time stamp of M
process M
send null message to neighboring LPs with time stamp
equal to lower bound on time stamp of future

messages (clock plus lookaheadl
WWW. maRgugess.60handy IMisra/Bryant null message adgorithm.
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In generd, the lookahead for alogical process may change during the execution
of the simulation. Here, we define lookahead in terms of a single logical process.
This concept can easily be extended to define lookahead for al messages sent from
one LP to another. Aswill be discussed later, lookahead depends on the semantics of
the simulation model.

Returning to the null message algorithm, the time stamp of null messages can be
st to the current time of the LP plus its lookahead. Continuing the air traffic
example, the lookahead of each LP is 3. When the JFK LP completes processing its
event a time 5, it sends a null message to both LAX and ORD with time stamp 8.
LAX will then process this null message, advance to simulation time 8, and send a
null message to ORD (and JFK) with time stamp 11. ORD can now process the time
stamp 9 (non-null) message.

The above example illustrates avery important point: The performance of the null
message algorithm depends critically on the lookahead value. Suppose that the
lookahead were 0.5 instead of 3. Then the following sequence of null messages
would be sent: JFK to LAX (time stamp 5.5), LAX to ORD (time stamp 6.0), ORD
to JFK (time stamp 6.5), JFK to LAX (time stamp 7.0), LAX to ORD (time stamp
7.5). Additional null messages would be generated because the LP must send one to
both LPs with each time advance. Five null messages must be transmitted in order to
process a single event! It is clear that smaller lookahead values would create even
longer sequences of null messages before a non-null message can be processed.

Further suppose that the lookahead is zero; that is, an LP at time T could schedule
a new event with time stamp T. The null message algorithm will fal in that case
because an endless sequence of null messages will be sent, al containing a time
stamp of 5, cycling from JFK to LAX to ORD, back to JFK, and so on. Thus an
important limitation ofthe null message algorithm is that there cannot be any cycle
of logical processes with zero lookahead. It can be shown, however, that the null
message algorithm will avoid deadlock if no such cycle exists.

The restriction that there not be any zero lookahead cycles implies that certain
types of simulations cannot be easily performed. One problematic situation is in
simulations where LPs can request (query) other LPs for state variables. A query is
usually implemented by the logical process requesting the state information LPa
sending a message to the process holding the desired state LPg with time stamp
equal to T, LPa's current time (i.e., zero lookahead is used). When LPB's receives the
message, it will have advanced to time T, and it will send a reply containing the
desired value with time stamp T (i.e., again with zero lookahead). This creates a zero
lookahead cycle. A simple solution is to include a small time stamp increment with
each message. However, while this avoids the zero lookahead cycle, as explained
earlier, small lookahead often leads to very poor performance for the null message
algorithm.

3.3 LOOKAHEAD AND THE SIMULATION MODEL

The notion of lookahead is fundamental to conservative synchronization mechan-
isms. Considerithe 10llica nrocess with the smallest clock value a some instant in
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the execution of a parallel simulation program. Let the current simulation time of
this LP be T. This LP could generate events relevant to every other LP in the
simulation with a time stamp of T. This implies that no LP can process any event
with time stamp larger than T, or it may violate the local causality constraint.
Similarly no LP can advance beyond simulation time T because it is then prone to
receiving notification of an event in its past.

Lookahead is used to solve this problem. Let Tg be the current time of the LP
with the smallest clock value in the entire simulation. If each LP has a lookahead of
L, then this guarantees that any new message sent by an LP must have atime stamp
of a least Tg+ L. Thisin tum implies that al events with time stamp in the interval
[Ts TgtL] can be safely processed. L is referred to as the lookahead for the LP
because it must be able to "look ahead" L time units into the future and schedule the
events at least L time units prior to when they actually happen.

Lookahead is clearly very intimately related to details of the simulation model.
Some examples of where lookahead may be derived are described below.

» Limitations concerning how quickly physical processes can interact with each
other. In the air traffic example, the minimum amount of time for an aircraft to
fly from one airport to another determined the minimum amount of simulation
time that must elapse for one logical process to affect another. This minimum
flight time was used to define a lookahead value.

» Physical limitations concerning how quickly one LP can react to a new event.
Consider again the air traffic simulation. Suppose that the minimum amount of
time an aircraft must remain on the ground to exchange passengers is one unit
of simulation time. Then, if the smallest time stamp of any arrival event that
will be received in the future is T, no new aircraft will depart until T + 1, and
the minimum time stamp of any arrival event it will schedule for another
process is T + 1 + minimum_transiCtime. Thus the minimum amount of time
any aircraft remains on the ground further enhances that LP's lookahead.

 Tolerance to temporal inaccuracies. Suppose that an LP produces an event at
time T, but errors of up to 1 unit in simulation time can be tolerated by the
receiver while ill producing sufficiently accurate results. Then the LP may
schedule events 1 time unit into the future, providing a lookahead of this
amount.

 Non-preemptive behavior. In the air traffic example, once an aircraft departed
from one airport, nothing in the simulation model could prevent that aircraft
from arriving a its destination airport a the assigned arrival time. |f the model
included other events that preempted this behavior, such as a midflight, JFK
could divert an LAX-bound aircraft to ORD, and arrive a ORD only 0.5 time
units after the "divert flight" event, then JFK's lookahead would be reduced to
only 0.5. Thus the non-preemptive nature of the original air traffic simulation
enhances its lookahead.

» Precomputing simulation activities. |f the events produced by an LP over the
not depend on externa events but only on interna
W@Wp"éﬁﬁ@ﬁe@ r«ﬂomputations can be performed in advance, enhancing
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lookahead. For example, if the time for an aircraft to fly to another airport were
drawn from a random number generator, the flight time could be selected in
advance, and this value rather than the smallest number that could be selected
from the generator can be used as the lookahead value.

Lookahead can change dynamically during the execution. However, lookahead
cannot instantaneously be reduced. At any instant, alookahead of L indicates to the
simulation executive that the LP will not generate any new event with time stamp
lessthan T +L, where T is the LP's current time. |f the lookahead is reduced by K
units of simulation time, the LP must first advance K units before this changed
lookahead can take effect, so no events with time stamp less than T+ L are
produced.

3.4 DEADLOCK DETECTION AND RECOVERY

As discussed earlier, the principal disadvantage of the Chandy/Misra/Bryant
algorithm is that a large number of null messages can be generated, particularly if
the lookahead is small. Recall that the approach used in this agorithm is to avoid
deadlock situations. Another approach is to use the origina algorithm shown in
Figure 3.3 that is prone to deadlock but provide a mechanism to detect and recover
from deadlock situations. This approach is described next.

3.4.1 Deadlock Detection

The simulation computation depicted in Figure 3.3 is one example of a diffusing
computation. This means the distributed computation consists of a set of processes,
and processes only perform computations upon receiving one or more messages.
Once initiated, the process continues with its loca computation, sending and
receiving additional messages to other processes, until it again stops. Once a process
has stopped, it cannot spontaneously begin new computations until it receives a new
message. The computation can be viewed as spreading or diffusing across the
processes much like a fire spreading through a forest.

A single controller process is introduced to the distributed simulation. The
distributed simulation computation cycles through the following steps:

1. The computation is initially deadlocked.

2. The controller sends message(s) to one or more LPs informing them that
certain events are safe to process, thereby breaking the deadlock. More will be
said about this later.

3. The LP(s) process the event(s)| that have been declared safe. This typically
generates:new messages that are sent to other LPs that (hopefully) cause them
to process till“more events, and generate additional messages to still other
LLPs. The spreading of the computation to previously blocked processes is
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viewed as constructing a tree. Every process that is not blocked is in the tree.
Whenever a message is sent to a process that is not in the tree, that process is
added to the tree, and (logically) alink is established from the process sending
the message to the process receiving the message. LPs that are in the tree are
referred to as being engaged. Processes that are not in the tree are referred to
as being disengaged.

4. Just as the tree expands when the diffusing computation spreads to new LPs, it
also contracts when engaged LPs become blocked. Specificaly, if an LP
becomes blocked, and that LP is a leafnode in the treg, the LP removes itself
from the tree and signals its parent (the LP that originally sent it the message
that caused it to become engaged) that it is no longer in the tree. An LP
becomes a |eaf node in the tree when al of the LPs it added to the tree signal
that they have removed themselves from the tree.

5. If the controller becomes aleaf node in the tree, then the computation is again
deadlocked, completing the cycle.

A signaling protocol is used to implement the paradigm described above. Specifi-
cdly, each LP adheres to the following rules:

» When an engaged process (a process aready in the tree) receives a message, it
immediately returns asignal to the sender to indicate the message did not cause
the tree to expand.

» When a disengaged process receives a message, it becomes engaged; it does
not return a signal to the sender until it becomes disengaged.

» Each LP maintains a count indicating the number of messages that it has sent
without receiving a signd. When this count is zero, the LP is aleaf node in the
tree. Ifthe LP isblocked and its count becomes zero, it becomes disengaged, S0
it sends a signal to the process that originally caused it to become engaged.

An example depicting a scenario with four logical processes is shown in Figure
36. In (a) the computation is initially deadlocked and dl four processes are
disengaged. The controller sends a message to process 3 to break the deadlock. In
(b) process 3 is now engaged (i.e, is in the tree) and the computation "diffuses" to
the other three processes as process 3 sends a message to each of them. Figure 3.6(c)
shows the engagement tree including all four processes. In (d) several independent
actions occur. Process 2 sends a message to process 4; however, process 4 is already
in the tree, s0 process 4 immediately returns a signal to process 2 (not shown).
Processes 1 and 3 both become blocked because of an empty FIFO queue. At this
point, process | is aleaf node in the tree, o it sends asignal to process 3, the process
that originally caused | to become engaged. Process 3, however, is an interior
(nonleaf) node of the tree, so it does not send any signal. The end result of these
actions is process | becomes disengaged, as shown in Figure 3.6(e). In this figure,
processes 2 and 4 also become idle and send signals to process 3, since they are | eaf

nomw?éﬁréa%m in (f), both 2 and 4 become disengaged. Process 3 is
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Figure3.6 Example of deadlock detection algorithm. (a) Controller initiates process 3 after
deadlock, (b) 3 is added to engagement tree, 3 sends messages to 1, 2, and 4 to spread
computation, (c) engagement tree includes al processors, (d) 1 and 3 become idle, 2 sends a
message to 4, but 4 is adready in tree, (e) 2 and 4 become idle, (j) 3 becomes idle and the
computation is deadlocked.

now aleaf node of the tree and is idle, so it sends a signal to the controller process,
indicating that the entire computation is again deadlocked.

To implement this signaling protocol, each LP must be able to determine whether
it is engaged or disengaged, and if it is engaged, whether or not it is a |eaf node of
the tree. Two variables are defined for this purpose:

e C is defined as the number of messages received from neighbors that have not
yet been signaled.

« D is defined as the number of messages sent to other processors from which a
signal has yet to be returned (the number of descendants in the tree).

The approach used in the signaling protocol is the following: An LP assumes that
each message it sends causes the receiver to become engaged. The receiver returns a
signal if either'(2) it is already ‘engaged or (2) it is becoming disengaged because it is
aleaf node ofthe tree'and it is blocked. An LP isengaged if C is greater than zero. If
C is equal to 0, the process is disengaged, and D must aso be zero. An LP is aleaf
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node of the tree if its C vaue is greater than zero (i.e,, it is engaged) and its D value
is zero.

Sending a message to another process causes D in the sender to be incremented
by one. C in the receiver is aso incremented by one when the message is received.
When a process sends a signal to another process, C in the sender is decremented by
1, and D in the receiver is decremented by 1. It must always be the case that either C
is greater than zero (the process is engaged and hasn't returned a signal for the
message that caused it to become engaged), or D is equal to zero. If C is zero, then it
must be the case that D is also zero, and the process is disengaged. When C and D in
the controller are both zero, the simulation is deadlocked.

3.4.2 Deadlock Recovery

The deadlock can be broken by observing that the message(s) contammg the
smallest time stamp in the entire simulation is (are) aways safe to process. This
is the event that would be processed next in a sequential execution of the simulation
program. Thus, to break the deadlock, the simulation executive need only identify
the event containing the smallest time stamp and send a message to the LP(s)
holding the event to indicate that the event can now be safely processed.

L ocating the smallest time-stamped event is relatively straightforward because the
computation is deadlocked, so no new events are being created while the smallest
time stamped event is being located. The controller can broadcast a message to al of
the LPs requesting the time stamp of the event within that processor containing the
smallest time stamp. After receiving a message from each processor, the controller
determines the smallest time-stamped event(s) in the entire simulation, and instructs
the processors(s) that hold them to process the events(s). This approach assumes that
there are no messages in transit in the network while the deadlock is being broken.
Depending on details of the communication subsystem, which in tum depends on
the hardware architecture, this mayor may not be the case. We will return to this
subject later.

The broadcast could be performed by having the controller directly send a
message to every other processor in the system, or by constructing a spanning tree,
that is, a tree with processors as the tree nodes and the controller at the root that
includes al processors in the system as shown in Figure 3.7. The links of the tree can
be defined arbitrarily; they need not correspond to links between logical processes.
The controller initiates the broadcast by sending a "request minimum time stamp”
message to each descendent processor in the tree. Upon receiving this message, each
processor forwards the message to each of its descendants in the tree. Processors that
are leaf nodes in the tree do not forward the request to other processors. Instead, each
leaf node processor returns a message to its parent in the tree indicating the time
stamp of the smallest time-stamped event in that processor. Each processor that is
not a leaf node of the tree waits until it has received such a "reply" message from
each descendant in the tree, and computes the minimum among (1) the time stamp of
local events within that processor and (2) the time stamp value in each of the reply
madsadas Miatsl@arfia descendants in the tree. Thus each processor computes the
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Figure 3.7 Example of deadlock recovery mechanism. Each node of tree represents a
processor, and the number in each node indicates the time stamp of the smallest time-stamped
even in that processor. Arrows indicate communications in the second round to compute the
global minimum.

minimum among al processors in the subtree rooted by that processor. This
minimum time stamp value is reported by that processor to its parent in the tree
in its reply message, as shown in Figure 3.7. In this way the global minimum
computation propagates up the tree, and the controller computes the global
minimum. The controller can then broadcast this global minimum back down the
spanning tree, indicating that all processors with an event(s) with time stamp equal
to this globa minimum can safely process that event(s). Thus the tree-based
algorithm uses three rounds of messages to break the deadlock: (1) messages
initiating the global minimum computation flowing down the tree, (2) reply
messages to compute the global minimum flowing up the tree, and (3) restart
messages to instruct processors which events are safe to process again flowing down
the tree.

One drawback of the algorithm described above is that it is overly conservative in
that it only specifies the smallest time stamped event(s) as being safe to process.
Using lookahead information, a larger set of safe events can usually be obtained. In
general, any algorithm that is able to define a set of safe events among a collection of
blocked logical processes can be used. One such algorithm based on a concept called
"distance between processes" is described later in this chapter.

The deadlock detection and recovery approach described above aso relies on the
entire computation becoming deadlock before it attempts to break the deadlock. An
aternative approach is to detect deadlock among a subset of logical processes, and
then break these "local deadlocks' as they occur. Detecting partial deadlocks is
more complex than detecting deadlocks of the entire system, however, and the extra
complexity required to perform this computation may not result in a significant
performance.improvement.. Although.some parallel simulation systems have been
proposed using this approach, few have been realized, so this subject will not be
pursued further.

Unlike the'null message ‘algorithm, the deadlock detection and recovery ago-
rithm described abave allows theilookahead of the simulation application to be zero.
Cycles of zero lookahead LPs are permitted with this algorithm. If lookahead is
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available, this information can be used to expand the set of safe events when the
deadlock is broken. For example, if the lookahead of each LP is L and the LP
furthest behind in the execution has a clock value of T, then al eventsin the interval
[T, T +L1are safe and can be processed.

An important observation in the deadlock detection and recovery algorithm is that
it utilizes the time stamp of the next unprocessed event. This information was not
used in the null message algorithm. Consider a set of logical processes, each with
lookahead of 1, al blocked at simulation time 10. Suppose that the time stamp of the
next unprocessed event is 100. Unless this information is used, there is no means to
immediately advance al of the LPs to time 100. Instead, the LPs are doomed to
advance only in increments of the lookahead value until they reach 100.

3.5 SYNCHRONOUS EXECUTION

In the deadlock detection and recovery algorithm the processors repeatedly cycle
through "phases" of (1) one or more processors processing simulation events and
(2) deadlock resolution. Several conservative synchronization algorithms utilize this
approach of cycling between phases, but they explicitly control when the entire
computation stops rather than relying on the system becoming deadlocked. To
control the latter, these algorithms rely on a mechanisms called barrier synchroniza-
tions.

A barrier is a general parallel programming construct that defines a point in
(wallclock) time when all of the processors participating in the computation have
stopped. As shown in Figure 3.8, when a processor executes the barrier primitive, it
blocks, and remains blocked until all of the processors have executed the barrier
primitive. The barrier operation is completed when al of the processors have
executed the barrier primitive; each processor is then allowed to resume execution,
starting at the statement immediately following the barrier.

processor executes
~Abarrier primitive

. n

processors I /!

‘ 1
/1 ——
Processsor 4 _ i

i AT

: S
Processsor 3 ’ E
|

Processsor 2 ———— ==

Processsor 1

wallclock time

Figure 3.8 Sample execution of processors entering a barrier. The solid horizontal line
indicates that the processor is executing; the white space indicates that the processor is
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The barrier synchronization is a useful primitive because it defines a point in
wallclock time where al the processors are a a known point in their execution. One
typical use is to divide the execution of a parallel program into a sequence of steps,
where each step involves a parallel computation that must be completed before
execution moves on to the next step o that successive steps do not interfere with
each other. Barriers will be used for this purpose here. Specifically, the parallel
simulation program executing on each processor can be structured as shown in
Figure 3.9.

The barriers ensure that no events are being processed, and thus no new events are
being created, while the simulation executive is trying to determine which events are
safe to process.

In Figure 3.9 "processing safe events' is identical to what was done before: Each
processor executes simulation application code to model the occurrence of each
event. The principal question concerns the method for determining which events are
safe to process. As discussed earlier in the context of deadlock recovery, the smallest
time stamped event in the entire simulation is clearly safe to process. Lookahead is
used to identify other events that are safe to process.

We next describe techniques for implementing the barrier primitive, particularly
on distributed-memory computers. Two approaches for determining the set of safe
events are then discussed.

351 Centralized Barriers

There are two important issues that must be addressed in implementing the barrier
primitive. The first concerns controlling the blocking of processors entering the
barrier, and releasing the processors after the barrier has been achieved. The second
concerns ensuring that there are no messages lingering in the network, referred to as
transient messages, when the processors are released from the barrier. Three
approaches are described next.

A simple approach to implement the barrier is to designate one of the processors
in the simulation to be a globa controller. When a processor enters the barrier
primitive, it sends a synchronization message to the controller processor, and waits
for a response. When the controller has received such a message from every
processor participating in the simulation (including itself), it broadcasts a release

while (simulation in progress)
identify all events that are safe to process
barrier synchronization
process safe events

barrier synchronization

Figure 3.9 Parallel simulation program using barrier synchronizations.
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message indicating the globa synchronization point has been reached. Upon
receiving the release message, each processor continues execution starting at the
statement immediately following the barrier.

In a shared-memory multiprocessor, the equivalent to the central controller
approach is to utilize global synchronization variables. For example, two counters
can be maintained. A variable called Blocked indicates the number of processors
that have reached the barrier point. The second counter called Rel eased indicates
the number of processors that have (1) reached the barrier point, (2) detected that all
of the processors have reached the barrier point, and (3) proceeded beyond the
barrier. Both counters are initialized to zero. Assume that there are N processors in
the system. The condition Blocked equal to N (for any value of Released) indicates
that all processors have reached the barrier point, and it is used to signa that
processors can proceed beyond the barrier. Before a processor can initiate a barrier
operation, it must wait until Released is equal to 0. This is necessary to avoid
starting a new barrier operation before al processors have been released from the
previous one. Once Released is equa to O, the processor enters the barrier by
incrementing Blocked. This must be done as an atomic operation to avoid race
conditions. The processor then waits until Blocked becomes N. When the last
processor to reach the barrier point increments Blocked to N, the processors can be
released from the barrier. At this instant, Rel eased will till be equal to zero. Each
processor that is released from the barrier increments Released (again as an
atomic operation) and resumes execution beyond the barrier. The last processor to be
released from the barrier detects that it is setting Rel eased to become equal to N,
0 it resets both variables to zero. Setting Rel eased equa to 0 "arms" the barrier
for the next operation.

The principal drawback with the centralized approach is that it does not scale to
large numbers of processors, since the central controller, or the shared variablesin a
shared-memory machine, become a bottleneck. The controller must perfform N - 1
message sends and receives on each barrier operation.

3.5.2 Tree Barrier

The bottleneck problem is easily solved by organizing the processors as a balanced
tree with each node of the tree representing a different processor (see Fig. 3.10 for
the case of fourteen processors). When a leaf processor reaches the barrier point, it
sends a message to its parent processor. Each interior node of the tree waits until it
receives a synchronization message from each of its children. When it has received
such a message from each child, and has itself reached the barrier point, it sends a
message to its parent. The barrier is achieved when the root of the tree is a the
barrier point and has received a synchronization message from each child node.
Once the root detects the achieved barrier, it broadcasts a release message to all of
the other processors. This can be done by propagating the release messages down the
tree, reversing the flow of messages used to detect the achievement of the barrier.
This tree-based barrier mechanism requires approximately time 2 logk N where k is
the \giagrge mbthatses. @odn2(N - 1) messages for N processors; each processor




68 CONSERVATIVE SYNCHRONIZATION ALGORITHMS

Figure 3.10 Processors organized into atree to implement the barrier primitive.

except the root sends one message up the tree to its parent and receives one
broadcast message coming down the tree. Although Figure 3.10 shows a binary tree,
in general, any node degree can be used. In fact the centralized approach described
earlier isan N - 1 ary tree, with the controller at the root node, and the remaining
N - 1 nodes the children of the controller.

3.5.3 Butterfly Barrier

Another approach that eliminates the broadcast to notify the processors that a global
synchronization has been achieved is the butterfly barrier. Assume that an N-
processor barrier is performed, and the processors are numbered 0, 1,2, ... ,N - 1
To simplify the discussion, assume that N is a power of 2; it is straightforward to
extend the approach to arbitrary N. The communication pattern among processors
for this barrier mechanism for the case of eight processors is shown in Figure
3.11(a). Each processor executes a sequence of log N pairwise barriers with a
different processor at each step. A pairwise barrier between processors i and} is
accomplished by simply having i (or}) send a message to} (i) when it has reached
the barrier point, and then wait for a message from} (i) indicating that processor has
aso reached the barrier point. In the first step, processors whose binary addresses
differ only in the least significant bit perform a pairwise barrier; for example,
processors 3 (011) and 2 (010) perform a pairwise barrier. In the second step,
processors whose addresses differ only in the second least significant bit; for
example, processor 3 (011) and 1 (001) synchronize. In general, in step k processor
isSynehronizes:withsthe-processor.whese;address differs in only the kth bit (where
bits are numbered 1,2, ..., 10gN from least significant to most significant). These
pairwise synchronizations continue for log N steps until al of the address bits have
been scanned. This| communication | pattern is referred to as a butterfly. Each
processor lis released from the barrier once it has completed the log N pairwise
barriers.
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Figure 311 Eight-processor Butterfly barrier. (a) Communications pattern, and illustration
of barrier from the perspective of processor 3; (b) tree abstraction of barrier mechanism.

To see why this algorithm works, consider the operation of the barrier mechanism
from the perspective of a particular processor. The highlighted nodes and arcs in
Figure 3.11(a) illustrate the barrier from the perspective of processor 3. After step 1
has completed, processor 3 knows that processor 2 (as well as itself) has reached the
barrier point. Thisis illustrated by the dashed box around processors 2 and 3 in step
1 of Figure 3.11(a). After step 2, processor 3 receives a message from processor 1,
50 it knows processor 1 has aso reached the barrier. However, processor 1 must have
synchronized with processor O in step 1 before it could have synchronized with
processor 3in step 2, o processor 3 can conclude 0, 1,2, and 3 have all reached the
barrier point. This is represented by the dashed box around these four processors in
step 2. Continuing this analysis, after step 3 is completed, processor 3 infers from
receiving a synchronization message from processor 7 that processors 4, 5, 6, and 7
have also reached the barrier, so it can safely conclude that al eight processors have
reached the barrier point. In effect, as shown in Figure 3.11(b), atree is constructed
in bottom-up fashion with processors at the leaves. Intermediate nodes of the tree
indicate the set of processors that are known to have reached the barrier when that
stey\BiteMghranach&OhBen completed.
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The butterfly barrier mechanism requires flogNI steps to complete, and
transmission of NflogNI messages because each processor must send (and receive)
one message in each step of the algorithm.”

3.5.4 Transient Messages

A transient message is a message that has been sent but has not yet been received by
the destination processor. They are, in effect, "in the network." Transient messages
are an issue i f asynchronous message sends are allowed; that is, the sender is allowed
to execute after performing a message send without waiting for the receiver to
acknowledge receipt of the message. Asynchronous sends are particularly useful in
distributed computing systems (for example, networks of workstations) because the
delay in waiting for the receiver to send an acknowledgment for a message may be
large.

Unless properly accounted for, transient messages can cause errors in the
synchronous execution mechanism protocol shown in Figure 3.9. The basic problem
is that transient messages may not be properly accounted for in the computation to
determine which events are safe to process. For example, consider the case where dl
of the LPs advance to simulation time T, one LP sends a message with time stamp
T + 1, and dl the others generate messages with time stamp T + 10. Assume that all
of these messages are transmitted to their destination processor except the message
with time stamp T + 1, which is delayed in the network. All processors now enter
the barrier primitive, are subsequently released from the primitive, and begin the
computation to determine the events that are safe to process. Because the time stamp
T + 1 message has not been received, it is not taken into account in this computa-
tion. This would result in the processors erroneously believing the time stamp
T + 10 events are al safe to process, since there are none with a smaller time stamp.
It may be noted that this problem does not exist if synchronous message sends are
used, since the processor sending the time stamp T + 1 message would block until
this message is received a its destination. This prevents each processor from
entering the barrier until all messages it has sent have been received.

This problem can be solved without giving up asynchronous message sends by
using message counters. Each processor maintains two local counters indicating (1)
the number of messages it has sent, and (2) the number of messages it has received.®
There are no transient messages in the system when (1) dl of the processors have
reached the barrier point and thus are not producing new messages, and (2) the sum
of al of the send counters across dl of the processors is equal to the sum of the
receive counters across al of the processors.

Tree Barriers  Thermechanismifor-ensuring that the total of the send and receive
counters match can be combined with the barrier primitive. Consider the tree barrier.
When aleaf processor sends a message up the tree to indicate that it has reached the
7 IXI (pronounced ceiling of X) denotes the smallest integer greater than or equal to X.

8Axsimple .optimization to.this approach.is to' maintain one variable indicating the difference between
these two quantities.
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barrier point, it aso transmits its send and receive counters. Each processor a an
interior node of the tree sums the counters it receives from the child processors in the
tree with its own counters, and sends the two sums to its parent in the tree. Using this
approach, the root will hold the total sum of the send and receive counters across al
of the processors. These counters may not match at the root, however, because a
processor may not have received one or more transient messages when it added the
values of its local counters into the sum. To address this problem, if any processor
receives a message after it has sent its counters to its parent in the tree, it sends a
separate message to the root denoting this fact, causing the total count of the number
of recelved messages to increase by one. When the root detects that the total send
and receive counters match, it broadcasts a message indicating that the barrier has
been reached and that there are no more transient messages in the system.

Butterfly Barriers A more complex mechanism is required when the butterfly
barrier is used. The butterfly barrier can be viewed as a sequence of barriers, each
covering a successively larger set of processors. For example, as shown in Figure
3.11(b), from processor 3's perspective the barrier is achieve by first performing a
barrier among processors (2, 3), next among processors (0, 1,2,3), and then among
0, 1,2, ...,7). The path up the tree dictates the sets of processors that must
synchronize in order to achieve global synchronization. Define Gk(i) as the group of
synchronizing processors a level k of the tree that includes processor i, or
equivaently, the kth level node of the tree that includes leaf node i as a descendent.
For example, G;(3) = (2,3), G»(3) = (0, 1,2,3), and G5(3) = (0, 1,2, ...,7). To
accomplish synchronization a level k of the tree, processor i communicates with the
processor with the same binary address as i except in bit position k to accomplish
synchronization with half of the processors in Gk(i). Define this set of "sibling"
processors with which processor i is attempting to achieve synchronization in step k
& K(i). For example, SI(3) = (2), 2(3) = (0,1), and S3(3) = (4, 5, 6, 7). This
notation is illustrated in Figure 3.12 (each shaded box represents a processor). In

level k

level k-1

)
(8) = Total Sendk(i) . .‘\‘ .‘,'\

(b) = Total Sendk'l (i)
() = TotalSendw-1(n_1(j))

WA B ARt Mar detecting transient messages in the butterfly barrier.
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general, SkU) is the sibling node to G,_,U), where level O is the level containing the
leaf nodes. Let nkU) be the processor with the same binary address as i, except for bit
position k (k = 1,2, ...). nkU) is referred to as the neighbor to processor i during
step k of the algorithm. Thus, in step k of the algorithm (for example, step 2),
processor i (for example, processor 3) must wait for a message from nk(i) (nz(3) is
processor 1; see Fig. 3.11(b» in order to synchronize with SkU) (Sz(3) = (0, 1»,
thereby ensuring synchronization among the processors in GkU) (Gz(3) =
(0, 1,2,3». Observe that G- xi) = Sk(nkU» and that GkU) = SkU) U Sk(nkU»,
Finally it can be seen that during step k of the barrier processor i is attempting to
achieve synchronization among processors in sibling nodes of the tree; that is, Sk(i)
(which includes nkU» and Sk(nk(i» (which includes i).

One can extend the butterfly barrier algorithm to accommodate transient
messages by preventing a processor from advancing to the next step if there are
any transient messages among the set of processors trying to synchronize in the
current step. Specifically, aprocessor i is not allowed to advance beyond step k ofthe
barrier algorithm unless

1. the processors in Gk(i) have dl reached the barrier point (just as before), and

2. there are no messages in transit between any two processors 1and m where
1, mg GkU).

When processor i reaches step k, there cannot be any transient messages among
processors within Gy~ U) (i.e., Sk(nkU»; see Fig. 3.12) because processor i could not
have completed step k - 1if there were any. Similarly there cannot be any transient
messages within SkU) when nkU) completes step k - 1. Therefore, to ensure that
there are no transient messages among processors in GKk(i), each processor i E GkU),
must ensure that there are no transient messages traveling from Sk(nk(i» to SkU) and
vice versa. This is accomplished by maintaining four sets of counters. First, SendkU)
(k= 1,2, ...,109(N» denotes the number of messages processor i has sent to a
processor in SkU), and ReceivekU) denotes the number of messages processor i has
received from a processor in SkU). To guarantee that there are no transient messages
between Sk(nkU» and SkU), one must verify that

L " SendkU) summed over al i E Sk(nk(i) isequal to » Receivek(J) summed
over alj E SkU), and

2. 3" Sendk(J) for al j E SkU) is equal to Y ReceivekU) for all i E Sk(nkU»,

To compute these conditions, define TotalSendkU) as > SendkU) summed over all
i E Sk(nkU», and define TotalReceivek(J) = Y_ Receivek(j) summed over all
jE"SKU):"ATkey observation'is'that these quantities can be defined recursively (see
the dashed arcs labeled a, b, and c in Fig. 3.12):

1. TotalSendy(i) = Total Sendy_ (i) + Total Sendyk_xnk-J (i»,
2. TotalReceivek(j)-+ TotalReceivek J(j) + TotalReceivek J(nk-J (j >,
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3. TotalSendjU) = Send ), and
4. TotalReceiveJU) = Receive) U).

Operationally each processor maintains the log N element Send and Receive
arrays as it sends and receives simulation messages. Sending and receiving
synchronization messages are not included in these counters. Consider the operation
of processor 3 in executing the barrier algorithm. When it begins the barrier, it sends
its arrays Sendy(3) and Receivek(3) (for dl k) which are equivalent to Total Sendy(3)
and Total Receivek(3), respectively, to its neighbor, processor 2, and waits to receive
arrays Total Sendy(2) and Total Receivey(2) from processor 2 if they haven't already
been received. Processor 3 then compares the first elements of the arrays. If
TotalSend 3) is equal to TotalReceivel(2), and TotalReceivel(3) is egual to
TotalSend 5(2), then there are no messages in transit between processors 2 and 3,
s0 each processor can advance to the next step in the algorithm. In particular,
processor 3 adds TotalSendi(2) (and TotalReceivek(2» to its local array
Total Sendi(3) (and Total Receivek(3». At this point, the Total Send and Total Receive
arrays in processors 2 and 3 are identical. Processor 3 then sends its new Total Send
and TotalReceive arrays to processor 1, its neighbor in step 2 of the algorithm. The
above steps are repeated, except now, the second elements of each array
(TotalSend»(3) and TotalReceivez(1), and TotalReceivez(3) and Total Sendz(1»
are used to determine if transient messages remain between the sets (0, 1) and
(2, 3). This process repeats for log N steps. After successfully completing the last
step, each processor can advance beyond the barrier point, with the knowledge that
al processors have reached the barrier point and no transient messages remain.

If in step p of the algorithm TotalSendpU) and TotalReceive,(n,()) (or
TotalReceive,(i) and Total Sendp(nii») do not match, then there is at least one
message in transit from processor i to ,() (or processor npU) to i). In this case, the
barrier operation has failed, and the processor must wait for additional messages
before it can proceed. Specificaly, if aprocessor receives anew simulation message,
then this indicates that the initial TotalReceive vector it sent in the first step of the
algorithm was incorrect, so the processor aborts the barrier operation and starts over
from the beginning (step 1). | f a processor receives new Total Send and Total Receive
arrays signaling that it was previously passed incorrect information in step k, then it
must return to step k and repeat the barrier from step k onward. This requires a
processor to maintain a copy of its TotalSend and TotalReceive vectors after each
step, however. An alternative approach is to simply abort the barrier computation and
restart it from the beginning. In either case, the barrier is, in effect, rolled back to an
earlier point in time and restarted. Because of the use of rollback, this barrier
mechanism is sometime called an optimistic barrier. It should be noted, however,
that the simulation program is not rolled back, only the barrier computation itself.

These mechanisms enable one to define a barrier where it is guaranteed that there
are no transient messages in the system when the processors are released from the
barrier. We next describe algorithms for determining the set of events that are safe to
process. We will return to the transient message problem again in the next chapter
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when we discuss agorithms for computing a quantity called Globa Virtual Time in
systems using optimistic synchronization.

3.5.5 A Simple Synchronous Protocol

A simple approach using lookahead to determine safe events can be derived by
parallelizing the sequential event processing loop. Consider a sequential simulation
that has advanced to simulation time T, which is the time of the next unprocessed
event in the event ligt. If the constraint is made that an event must be scheduled at
least L units of simulation time into the future, then it can be guaranteed that all new
events that are later scheduled in the simulation will have a time stamp greater than
or equal to T+L, so ay event with time stamp less than T+ L can be safely
processed.

In the parallel smulation, assume, as before, that the ssimulation is composed of
some number of logical processes. Each logical process LP, defines a lookahead
value L;- Let T; be the smallest time stamp of any unprocessed event in LP,. Let
Tw + Ly bethe minimum of T, + L; over al of the LPs in the simulation. This is the
minimum time stamp of any new event that will be later generated in the execution.
Then, as illustrated in Figure 3.13, all events with time stamp less than or equa to
Tw T Ly (those in the shaded rectangle in the figure) are safe to process because any
new event must have a time stamp larger than Tm +L,, (beyond the shaded
rectangle).

The program executed by each processor using this protocol is shown in Figure
3.14. A computation is required to compute a global minimum across the simulation.
This can be implemented by extending any of the barrier algorithms described earlier
to compute a minimum value among the processors entering the barrier. For
example, using the tree barrier agorithm, each processor in the tree would (1)
compute the minimum among all child processors in the tree if there are any, and its
own local minimum, and (2) report the minimum of these values to its parent in the
tree. The minimum computed by the processor at the root of the tree is the global
minimum, which is then broadcast to al of the other processors. Each processor
would then process dl events with time stamp less than Tv +L,,, the result of the
global minimum computation.

T —
--------- 00
T simulation time

Figure3.13 A simple synchronous protocol. Events in the shaded region are safe to process.
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while (simulation in progress)

T

Min

= min (T; + L;,) for all i
S = set of events in the processor with time stamp < T,
process events in S

barrier synchronization

Figure 3.14 Synchronous simulation protocol.

This approach requires few restrictions other than lookahead. The topology
among logical processes is arbitrary, and can change during the course of the
simulation. Further LPs need not schedule new events in time stamp order. The cost
of avoiding these restrictions is that there is no opportunity to exploit such
information when it is available. Extensions to the synchronous protocol to exploit
topology information are described next.

3.5.6 Distance between Logical Processes

Consider application of the synchronous protocol described in the previous section
to the air traffic simulation discussed earlier including LPs for LAX, ORD, and JFK.
Suppose that a fourth airport is added, in San Diego, called SAN. Recdl that
lookahead is derived from the minimum amount of time required for an aircraft to fly
from one airport to another. Suppose that the minimum flight time from SAN to Los
Angeles (LAX) is 30 minutes; this is clearly the minimum lookahead of any airport
in this example. Further suppose that a some point in the simulation there are only
two unprocessed events, one in SAN with time stamp 10: 00, and a second in JFK
with time stamp 10: 45. It is clear that the event in SAN cannot affect the event in
JFK, since an aircraft requires severa hours to fly from San Diego to New York, so
one should be able to process these two events concurrently. Ye, using the protocol
described earlier, no event in the system with time stamp larger than 10: 30 can be
processed in the current iteration of the algorithm, since the minimum time stamp of
the next event that can be scheduled is 10:30. To circumvent this problem, additional
information concerning which LPs can schedule events for which others must be
provided.

To verify that the event in JFK cannot be affected by the event in SAN, we need to
know the smallest amount of simulation time that must elapse for an event in SAN to
affect JFK. Suppose that there is no link from SAN to JFK because the model does
not include any direct flights between these two airports. SAN could affect JFK by
scheduling an event in LAX, which then schedules another event in JFK. Considera-
tion of dl paths from SAN to JFK (specifically, SAN to ORD to JFK must aso be
considered) alows one to determine the minimum amount of simulation time that
must elapse for an event in SAN to affect JFK.

This idea is captured in the notion of distance between processes which provides
a | oWavNsumBinatieaneQRf of simulated time that must elapse for an event in one
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process to affect another. |f the network of LPs is not fully connected, that is, if there
is not a link between every pair of LPs, an event will have to propagate through one
or more additional LPs before it can reach a specific LP. Distance information
provides a means of exploiting information concerning the topology of logical
processes to derive better bounds on the time stamp of events that can arrive in the
future, and in principle, it alows one to derive larger numbers of events that are safe
to process in the synchronous execution approach.

Here, it is assumed that there is a fixed network of logical processes. If logica
process LPa can send a message to LPg, then there is alink from LPa to LPg. A
lookahead LAB is associated with each link; that is, messages sent from LPa to LPg
must have atime stamp of at least LAB larger than LPas current time. For notational
convenience, we assume that there is a most one link from LPa to LPg-

Distance is defined as follows:

* |f a path exists from LPa to LP; traversing in succession logical processes
LP,, LPg, LPc,...,LPy,LPz, then Dpgc.yz is defined a Lpg Tt
Lge t ..o tLyz-

- DAB, the distance from LPa to LPg, is defined as the minimum of D, over all
paths from LPa to LPg.

The distance between pairs of processes can be encoded in a matrix caled the
distance matrix. The entry in row i and column} indicates the minimum distance Dij
from LP, to LP}. Figure 3.15(b) shows the distance matrix for the network shown in
Figure 3.15(a). For example, there are two paths from LPa to LPq, oflengths 3 (via
LP.) and 4 (via LPg). The distance from LP, to LPq is the minimum of these two
vaues, or 3. In generdl, if there is no path from LP, to LP}, then the distance Dij is
defined as oo.

@

LPA_LPs LPG LPD
LPal 4 3 1

3
(b) II:PPC'%S g 2 i er\mm (1+2, 3+1)
LPol5. 14 2 4
Figure'3.15 (a) Network of logicd processes indicating lookahead on each arc. The boxes
represent events with time stamp 11, 13, and 15; (b) distance matrix for this network of LPs.
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In simulations containing a large number of logica processes relative to the
number of processors there will be many LPs mapped to each processor. In this case
it may be more efficient to consider distances between processors than processes. In
essence the LPs mapped to a single processor can be viewed as a "superlogical
process' that includes many LPs for the purpose of determining which events are
sdfe to process. This has the disadvantage that it may be overly conservative in
determining which events are safe to process. In other words, each LP implicitly
assumes that all events within that LP must be processed in time stamp order, but
this may not be necessary if the LP models several independent components.

The distance from an LP to itself is computed by determining the minimum
length cycle that includes this LP. For example, for LPa in Figure 3.15, there are four
cyclesincluding LPa: LPA — LPg; — LPa (length 7), LPA — LPc — LPa (length
4), LPy - LPy —» LPg — LPc — LP, (length 9), and LP, — LP; — LPy —
LPg — LPa (length 11), S0 D pp iS 4.

An event in LPg with time stamp T, depends on (can be affected by) an event in
LPa with time stamp T, if T, + DAD < To. For example, in Figure 3.15(a) the time
stamp |1 event in LPa could cause anew event to be sent to LPg with atime stamp
as small as 14. Thus the time stamp 15 event in LPg depends on the time stamp 11
event in LP,. Conversely, the time stamp 13 event in LPg does not depend on the
time stamp 11 event in LPa because the minimum distance from LPa to LPq is 3.
An event E in LPX is said to be safe if it is not possible for a new event to be
generated and sent to LPy that contains a time stamp smaller than E's time stamp.

Each logical process can determine which events within that LP are safe to
process if it can determine alower bound on the time stamp of any message that LP
will later receive. Let LBTS; be the lower bound on the time stamp of any message
LP; can receive in the future. All events in LP, with time stamp less than LBTS, are
safe. Let T, be the smallest time stamped event in LP, T, is defined as oo if there are
no events in LP,. Then

LBTS = r:mp('[ +D)i17)' (3.2

Note that the minimum computation includes the case where} is equa to i. This is
necessary to account for the possibility of an event in LP, causing a message to be
sent to one or more other processors that results in another message that is sent back
to LP. Also this equation assumes that there are no transient messages in the
network. Thus it is assumed that this equation will be applied after a barrier
mechanism has been used to ensure there are no such messages.

For example, in Figure 3.15, LBTS, is 15 (Tp+ Dpaa), LBTS; is 14 (Tp + DAB),
LBTSc is 12 (TA+ Dy¢) and LBTSg is 14 (Ta+ DAD)' This implies that the time
stamp 11 even in LPa and the time stamp 13 event in LP, can be safely processed.
The time stamp 15 event in LPy is not safe, verifying the analysis that was
performed earlier.

The approach described above requires each processor to communicate with
eveny\ gy pr|esadioia e Biistem to obtain their T, values to compute which events
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are safe to process. This generates N2 messages each time the set of safe events must
be computed. This limits the applicability of this algorithm to systems containing a
modest number of processors. An approach using time windows will be discussed
later to alleviate this problem.

Another drawback with this approach is the distance matrix must be recomputed
if lookaheads change during the execution of the simulation program. This problem
can be addressed by using an alternate method for computing LBTS values, depicted
in Figure 3.16. An approach reminiscent of the null message algorithm (and similar
to Dijkstra's algorithm for computing shortest paths) is to have each LP initialize its
LBTS value to oo. Then each LP sends a message to the other LPs to which it may
send messages indicating the smallest time stamp on any message it may send in the
future, assuming that it does not receive any new messages (initialy, the time stamp
of the next unprocessed event plus the link's lookahead). An LP receiving such a
message will use this information to determine if its local LBTS value should be

Figure 3.16° Computation for [computing LBTS values. (a) Each LP sends messages
indicating a lower bound on the time stamp of the sent messages (if this value is not 00).
(b) Each LP updates its LBTS, and-if its value decreased, it sends messages indicating a new

lower bound on the time stamp of these messages. (c) No new messages are generated; the
final TRTSI values have heen comnuted.
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updated (reduced). 1fthe LPs LBTS value is reduced, and the LP now discovers that
it could send a smaller time-stamped message than what it had previously reported to
its neighbors, it sends new messages indicating a new lower bound on the time stamp
of messages it could later send. This process continues until no additional messages
are generated, at which time each LP has computed its LBTS value, and the
computation completes.

For example, in Figure 3.16(a), LPa may send messages with time stamp 14 and
12 to LPg and LPC, respectively, because of its local event with time stamp 11, and
its lookahead to LPg is 3, and to LP¢ is 1. Similarly LP, may send messages with
time stamp 17 and 15 to LPg; and LPC, respectively. No messages are sent by LPg
and LPc because they cannot generate a lower bound on the time stamp of future
messages other than oo. In Figure 3.16(b) the LBTS values of LPg and LP; are
updated to the smallest value among the messages they received. LPg and LPc now
send additional messages indicating lower bounds on the time stamp of messages it
may later send. Because LPg; may receive a message with time stamp 14 (its new
LBTS value), it could generate messages with time stamp 18 to LPA (lookahead 4)
and 15 to L P (lookahead 1). Similarly LP¢ could generate new messages with time
stamp 15 to LPA, and 14 to LP,. These messages cause the LBTS values of L Pa and
LPp to change, as shown in Figure 3.16(c). However, this new LBTS value is higher
than the time stamp of events already buffered in each LP, so the lower bound on
future messages it might send is not reduced any further. Because no new messages
are generated, the computation is now complete.

It is instructive to compare the synchronous style of execution with the deadlock
detection and recovery approach described earlier. Both share the characteristic that
the simulation moves through phases of (1) processing events and (2) performing
some global synchronization function to decide which events are safe to process.
The two methods differ in the way they enter into the synchronization phase.

In the best case the detection and recovery strategy will never deadlock,
eliminating most of the clock synchronization overhead. In contrast, synchronous
methods will continually block and restart throughout the simulation. On the other
hand, the synchronous methods do not require a deadlock detection mechanism.
However, an important disadvantage of the detection and recovery method is that
during the period leading up to a deadlock when the computation is grinding to a
halt, execution may be largely sequential. This can severely limit speedup.9
Synchronous methods have some control over the amount of computation that is
performed during each iteration, so, at least in principle, they offer a mechanism for
guarding against such behavior.

3.6 BOUNDED LAG
Consider a large network of logical processes where the distance between pairs of
logical processes varies widely from one pair to another. For instance, if we extend

9 Amdahl's law states that no more than k-fold speedup is possible if I/kth of the computation is
sequAfAV . manaraa.com
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the air traffic simulation described earlier to a simulation of the global air traffic
network, there is a direct relationship between the physical distance between airports
and the minimum distance in simulation time required for two airport LPs to
interact, assuming as before that interactions occur through aircraft flying between
the airports. Consider a parallel simulation where al LPs are a simulation time T. It
is clear that air traffic now departing from Tokyo International airport cannot affect a
flight arriving at LAX 30 minutes from now; however, a flight that just left San
Diego airport destined for LAX could affect this incoming flight.

Thus it is curious that a simulation of the global air traffic network using the
synchronous paralel simulation algorithm based on equation 3.1 must collect
information from every other processor in the system (i.e., every other airport in
the world) before it can determine which local events are safe to process.
Specifically, in the above scenario where flights are converging on LAX, the
simulation algorithm requires that LAX solicit information from Tokyo International
before it certifies that the arrival event at LAX 30 minutes from now is "safe" to
process. As mentioned earlier, requiring each processor to collect information in this
way from every other processor prevents the algorithm from scaling to large
numbers of processors. Thus a mechanism is needed that will reduce interprocessor
communication so that one can determine which events are ssfe.

The reason that the algorithm using equation 3.1 must collect information from
every other processor is because no consideration is made on how far into the future
one should check for the safety of alocal event. For example, while it is intuitively
clear that a recent Tokyo departure cannot affect an arrival a LAX occurring 30
minutes from now, such a departure could affect LAX arrivals that occur 24 hours
from now. Because the synchronization algorithm makes no distinction between
"near-future" and "far-future" events, it must check dl logical processes in the
entire simulation to determine whether its far-future events are safe to process.
Because far-future events are unlikely to be safe, expending much effort to
determine if these events are safe to process is usually wasteful.

A simple approach to improving the efficiency of the synchronization algorithm
is to introduce an interval (also commonly referred to as a "window") of simulation
time extending from the time stamp of the smallest event in the simulation Tg to
Tg+ Ty, where Ty denotes the size of the window. Events with time stamp larger
than Tg+ Tware not considered for execution in this iteration of the algorithm. Thus
the simulation executive need not determine the safety of "far-future" events; these
are events with time stamp larger than Tg+ Tw. Because events with time stamp
beyond Tg+ Tware never processed in the current iteration, no LP can advance its
local simulation time clock more than Tw units of simulation time ahead of another
LP. For this reason Tw is also referred to as abounded lag in the simulation; it limits
how far behind one LP can lag behind another.

Events with time stamp less than or equal to Tg+ Tware called near-future
events, and those with time stamp greater than T + Tware calledfar-future events.
Fer-future events are automatically assumed to be unsafe. The synchronization
algorithm' only”attempts to determine the safety of near-future events.
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IfDyy > Ty, then LP, need not check LPy to determine if its near future events
are safe. This is because LPxs next event must have atime stamp of at least Tg. This
event cannot affect any event in LP, with time stamp less than Tg+ Dy, which is
greater than Tg+ T, since Dxy > Ty,. But LP, is only considering the safety of
near-future events that have atime stamp less than Tg+ Tyy. Thus LPy is "too far"
away to affect any events that LP, is considering for execution during this iteration,
0 LPy need not check LPy when checking the safety of its events.

Using time windows, LP, need only check LPy if Dyy < Ty. Thus equation 3.1
is modified to equation 3.2 below:

LBTS = min(7; +D;) (32

Dji<Tw

For example, in Figure 3.15, if T,y is 4 and D¢g is 6, then LP; does not need to
check LPc in computing LBTS; to determine which events are safe to process.

An important question concerns setting the size of the time window. If the
window is too small, there will be too few events within the window that are
available for concurrent execution. On the other hand, if the window is too large, the
benefits afforded by the window are lost because the simulation mechanism will
behave in much the same way as if no time window were used a al. In general, one
must carefully tune the simulation executive for each application to set the window
to an appropriate size that both achieves a reasonable amount of concurrent
execution and limits the overhead in performing the LBTS calculations.

3.7 CONDITIONAL VERSUS UNCONDITIONAL INFORMATION

It is sometimes useful to distinguish between conditional and unconditional
information in the smulation. Unconditional information is that which can be
guaranteed to be true based on local information. For example, if an LP has
advanced to simulation time T, and it has a lookahead of L, then the LP can
unconditionally guarantee T +L is a lower bound on the time stamp of messages
that it may generate in the future. Only unconditional information was transmitted
among logical processes via null messages in the Chandy/Misra/Bryant algorithm.

Conditional information is information provided by a logical process that is only
guaranteed to be true if some predicate is true. In the example illustrated in Figure
3.16, each LP initially sends a message to neighboring LPs equal to the time stamp
of its next event plus the lookahead for the link on which the message is sent. This
information is alower bound on the time stamp of future messages sent over that link
provided that LP does not receive any messages in the future with time stamp
smaller than its next local event. In this sense the lower-bound information sent by
the LP is conditioned on the fact that it could receive a new message in the future
with time stamp smaller than its next local event. As the algorithm proceeds, LPs
may receive new information concerning events it could receive in the future that
may \G&MSY . ManaXmee abdconditional lower-bound information it had sent in
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previous messages. It is only when each LP has determined its true LBTS value that
it can unconditionally guarantee the lower bound on time stamps of future messages
it will send in the future.

The fact that the original Chandy/Misra/Bryant algorithm only transmits
unconditional guarantees on the time stamp of future events, and the synchronous
algorithm described above allows logical processes to transmit conditional informa-
tion is akey distinction between these algorithms. It allows the simulation executive
to avoid the "simulation time creep” problem where LPs only advance in lookahead
increments to advance to the time stamp of the next unprocessed event.

3.8 DYNAMIC PROCESSES AND INTERCONNECTIONS

The discussion thus far has assumed a static topology; that is, the processes and links
among processes are known prior to the execution and do not change during the
execution of the simulation program. This is acceptable for certain classes of
applications, such as a simulation of a wired telecommunication network utilizing
some fixed topology. For other applications the interactions between logical
processes may vary over time. For example, if an LP were used to model each
aircraft in the air traffic simulation discussed earlier, interactions among LPs would
depend on the physical proximity of aircraft to airports, which will change
dramatically throughout the simulation.

One simple approach to allowing dynamic creation and destruction of logical
processes and links is to initially create al logical processes and links that may be
needed during the entire execution. This allows existing synchronization agorithms
to be used more or less “as is." A pool of unused LPs is created a the beginning of
the execution, and is used as new LPs are required. This approach requires one to be
able to place an upper bound on the number of processes that will be required.
Unless one can guarantee a priori that certain pairs of LPs will never need to
exchange messages during the execution, a fully connected topology where each LP
can send a message to any other LP must be used. This can lead to inefficiencies in
certain synchronization algorithms. For example, each of the unused logical
processes may be required to send null messages to the other LPs.

A more flexible approach is to alow new LPs and connections to be established
and joined to the existing network of logical processes during the execution. With
respect to synchronization, creation of new LPs does not produce problems so much
as establishing new connections. The central problem that must be addressed is that
any new connection to an existing LP provides a new source of messages for that LP.
Let the "sending LP" refer to the LP on the sending side of the new connection, and
the "receiving L P"_be the L P on the receiving side. Precautions must be taken to
ensure that no messages are sent on the new connection in the past of the receiving
LP. Two approaches to preventing causality errors such as this are described below.
The first constrains the behavior of the receiving Lp, and the second constrains the
behavior. of the sending LP.
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1. Receiver constrained. One can prevent the receiving LP from advancing “too
far" ahead of al potential sending LPs in order to ensure that it does not
receive messages in its past. For example, if the receiving LP is constrained so
that it cannot advance more then L; units of time ahead of each potential
sending process LP,, where L; is the lookahead for LP;, then it is guaranteed
that the receiving LP will not receive any hew messages in its past.

2. Sender constrained. One can constrain the sending LP so that it cannot send
messages in the past of the receiving LP. | f the sending logical process LPg is
at simulation time Tg and the receiving process LPy is a simulation time T,
when anew connection is established from LPgto LPg, then the lookahead on
the newly established connection must initially be set to be a least T; - Tgto
prevent LP; from receiving messages in its past.

The first approach described above is somewhat restricting in that it does not allow
LPs to advance more than a lookahead amount ahead of other LPs. The second
approach allows LPs greater flexibility to advance further ahead of others but
provides less control because there is, in general, no limit on how large T - Tgcan
be (the initial lookahead on the new connection) other than the lookahead values
already in place on other existing links.

One example of the receiver constrained approach is called a connection transfer
protocol. This approach is based on the assumption that logical process LPg cannot
send a message to logical process LPy unless LPg first obtains ahandle (a reference)
to LPg. An important restriction is that logical processes cannot autonomously
manufacture new handles. Rather, handles can only be obtained by either creating a
new LP or receiving a handle from another LP via a message. It is assumed an LP
can only send messages to LPs for which it holds a handle. The parallel simulation
executive keeps track of which handles are owned by each LP in order to determine
the topology among LPs.

To illustrate connection transfer, suppose logica process LPa owns a handle to
LPg, indicating LP, can send messages to LP;. Assume LP, is & logical time T,,
and it has a lookahead of LA, and LPa is not blocked waiting for a simulation time
advance. Thisimplies Tz < T, LA where Ty isthe current logical time of LPg. To
establish a new connection from athird logical process LPgto LPg, LPA can send
LPs acopy of its handle. In order to prevent LPg from sending messages into the pat
of L P, this new connection must first be recorded within the simulation executive to
ensure LPg is taken into account when computing LBTS values for LP;. After this
has been accomplished, a copy of the LP, handle can be transmitted to LPg. LPg
cannot start using this handle until it reaches simulation time T, + max(O, LA - Lg).
This constraint guarantees that LPg will not send a message into a past of LP5.

A key observation in this transfer protocol is that LPas existing connection with
LPr is used to prevent LP; from advancing “too far ahead" and LPas commu-
nication with LPg, prevents LPg from lagging “too far behind" when the new
connection is established. This enables one to avoid causality errors when LPg sends

messages to LP. Thus, LPa plays a critical role in this mechanism.
Www.maﬁaraa.com
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An dternate approach is to use time windows to establish new connections.
Recall that atime window of size Tw prevents any LP from advancing more than Tw
units of time ahead of any other LP. This constrains the advance of LPs but allows an
LP to advance more than a lookahead amount ahead of other LPs because Tw may
be larger than the lookahead. To prevent an LP from receiving a message in its past,
the sender LP is required to use alookahead of at least Tw when the new connection
isfirst established. Specifically, if the sender is at time Tgwhen it establishes the new
connection, the first message it sends on the new connection must have atime stamp
of at least Tg+ Tyy. Because no LP can be more than Ty units of time ahead of
another LP, this guarantees that the new message will not be in the past of the
receiving LP. Asthe sending LP advances its simulation time past Tg, the lookahead
for this new connection can be decreased by an equal amount.

The window-based approach described above provides a means for establishing
new connections among existing LPs. When a new LP is created, one must ensure
that the new LP is initialized to have a simulation time no less than T, , the lower
edge of the time window. This is easily accomplished by requiring that the logical
process that created the new process do so by scheduling an event into its future. The
time stamp of this "create process" event defines the initial simulation time of the
new LP.

Finally a mechanism is required to ensure that proper destruction of LPs and/or
connections. This isrelatively straightforward. Destroying a connection is equivalent
to setting the lookahead for the connection to infinity. This ensures that the receiving
LP will not block on the connection. Destroying an LP can be accomplished by
destroying al connections to and from the LP, thus removing the LP from the
system.

3.9 REPEATABILITY AND SIMULTANEOUS EVENTS

In some cases it is important that repeated executions of the simulation program
using the same external inputs (and initial state) produce exactly the same results on
each execution. For example, the U.S. Department of Defense sometimes uses
simulations to make acquisition decisions, 0 the General Accounting Office (GAO)
may re-execute simulations to verify the results that are produced. Further, repeat-
ability ssimplifies debugging the simulation program because errors can be repro-
duced. In addition, if the simulation should produce repeatable results but does not,
this may immediately flag a bug in the simulation code or the simulation executive.

Recall that the synchronization protocols described thus far attempt to produce
the same results as a sequential execution of the same simulation program where
events.are processed.in.time stamp.order. |f no two events contained the same time
stamp, then the results of the simulation would aways be repeatable if the
computation performed by each event is repeatable. This latter condition is actually
a nontrivial ‘matter. For example, if the simulation program executes on different
CPUs;: differences in floating peint round-off error could result in nomepeatable
executions. Here, itis assumed that individual event computations are repeatable. So,
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to ensure that executions of the parallel simulation produce exactly the same resuilts,
it is sufficient to ensure that events containing the same time stamp at any logical
process are processed by that process in the same order from one execution to the
next. Events containing the same time stamp are referred to as simultaneous events.

3.9.1 Using Hidden Time Stamp Fields to Order Simultaneous Events

One approach to ensuring that simultaneous events are processed in the same order
from one execution to the next is to extend the time stamp field to include additional,
lower-precision bits that are hidden from the application program. The simulation
executive can automatically assign values to these hits to, in effect, ensure that no
two events in the system contain the same time stamp. The simulation application is
constrained to process events in increasing time stamp order, where the time stamp
now includes these hidden bits. The value placed in these lower-precision bits must
be assigned so that the time stamp values including the hidden bits are consistent for
causally dependent events. For example, if the computation for an event E,
schedules a new event E, to contain the same time stamp (excluding the hidden
bits) as the original, the hidden bits in the time stamp ofE, must be larger than those
in E,.

One can append two tie-breaking fields to the application defined time stamp
called the age and id, with the age field given precedence (assigned to more
significant bits) over the id field. Events that exist at the beginning of the simulation
are assigned an age of 1. If an event with time stamp T and age A schedules another
event with the same time stamp (ignoring the extra fields), the new event is assigned
an age of A + 1. If the new event has a time stamp larger than T, the age of the new
event is 1.

The age field ensures that events always schedule other events with higher time
stamps, but it does not ensure uniqueness. For example, an event with time stamp T,
and age 5 could schedule two new events also with time stamp T. In this case both
events will have an age of 6. The id field ensures uniqueness. This field is actually a
tuple with two components (S, i). Sis an identifier that indicates the logical process
scheduling the event. It is assumed that this identifier remains the same from one
execution to the next. Theii field is a counter indicating this is the ith event scheduled
by the process.

3.9.2 Priority Numbers

While hidden bits can be used to ensure repeatabl e orderings of simultaneous events,
a critical drawback with this approach is that it assigns the task of ordering
simultaneous events to the simulation executive, which typically has no knowledge
of the semantic meaning of the events. The proper ordering of simultaneous events
should normally be controlled by the simulation application. For example, consider a
simulation that is used to make acquisition decisions by comparing two competing
weapons systems. |If two simultaneous events denoting detonations at atarget occur,
the "wiWiwmyalmeee@ditedtm the system associated with the first detonation event
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that is processed. The simulation executive might use a scheme for ordering
simultaneous events that systematically favors one system over the other. This
could lead to mideading results if many simultaneous events occur, which might be
the case if a"coarse" timing model with limited temporal precision is used.

One approach to specifying the ordering of simultaneous events is to allow the
simulation application to define a priority number for each event, with lower-priority
numbered events processed before those with a higher-priority number. In effect the
priority field serves as the low-precision bits of the time stamp. A potential drawback
with this approach is that the sending process is responsible for assigning the time
stamp of the event. It is often more convenient to have the receiving process
prioritize events because, in general, only the receiver knows what other events occur
at the same time stamp, and the appropriate priority might depend on the state of the
receiver. |f the priority depended on the state of the sender, the sender could dways
include such information as a data field within the event itsdlf, but it is much more
difficult to have the sender assign a priority based on state information within the
receiver.

3.9.3 Receiver-Specified Ordering

Another approach to treating simultaneous events is to have the simulation executive
deliver all such events to the simulation application, and then force the application to
order the events in a manner consistent with the objectives of the simulation. For
example, in the above example, a random number generator might be used to
determine which system is credited with the destruction of the target. To ensure
repeatability, the simulation application needs only to ensure that the algorithm used
to order the simultaneous events is repeatable. It is noteworthy that if this approach is
used to order simultaneous events, the simulation executive does not need to deliver
the events to the simulation application in a repeatable fashion, since the application
will order the events using its own criteria once the events are passed to it. The
executive must only be able to guarantee to the application that it has delivered dl
simultaneous events, so that the application can then order and process these events.

One dlight complication to the scheme described above is that the simulation
executive cannot guarantee that it has delivered adl simultaneous events to a logical
process if zero lookahead is alowed. To see this, consider the following scenario:
The simulation executive guarantees some logical process LP\ that it has passed it al
simultaneous events with time stamp T. LP\ advancesto time T to order and process
these events. LP\ now generates a new event E\ a time T; this is possible because
zero lookahead is allowed. A message for E\ is recelved and processed by another
process L P2. L Pz now returns a message to LP\ with time stamp T. This contradicts
the original claim that LP\ had received al events with time stamp T!' One solution
to this dilemma is to require that a logical process temporarily have nonzero
lookahead whenever it requests to receive all simultaneous events at a given time
stamp.;. The lookahead may return to zero once the LP has advanced its simulation
time.
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Lookahead plays a crucia role in the performance of conservative synchronization
algorithms. Further the simulation application must be written in such away as to
maximize its lookahead. This often has a profound effect on the way the simulation
program is developed.

To illustrate this, consider the simulation of a queuing network. Here, each station
in the queuing network consists of a single server that services incoming jobs one a
atime, and an unlimited capacity queue holding jobs waiting for service (see Fig.
3.17). For example, a runway in the air traffic example presented earlier can be

epat‘tursl l arrtval
T+Q+S event event

T+Q

departure event
for previousjob
T event

LP,

/*
* Now = current simulation time
* S = service time for job
* NWait = number of jobs in queue
* Busy = true if server busy
*/
Arrival Event:
if (not Busy)

Busy := true;
schedule departure event at Now+S;
else

NWait := NWait+l;

Departure Event:
schedule Arrival event at LP2 at Now
if (NWait>0)
NWait := NWait-I;
schedule departure event at Now+S;
else
Busy := false;

Figure 3.17 Classical approach to modeling a queuing network server using arrival and
depanid/gveianaraa.com
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modeled as a queue, with jobs representing aircraft and the server modeling the
runway itself. 1f ajob arrives while the server is busy with another job, the newly
arriving job is placed into the queue where it waits to receive service. Here, assume
that the server processes thejobs in the queue in first-come-first-serve order, or more
precisely, the queue is afirst-in-first-out buffer.

The classical approach to modeling a single queue is to use two types of events:
arrival events to signify the arrival of a new customer at the station and departure
events to represent a customer completing service, and leaving the station, typicaly
to advance to another gtation. In the air traffic simulation presented in Chapter 2, the
arriva and landed events are equivalent to the arrival and departure events that are
used here, respectively. The sequence of events for a singlejob arriving at a station,
receiving service, and departing from the station is shown in Figure 3.17. An arriva
event occurs a time T. If the server isidle, the job immediately begins service and
schedules a departure event S time units into the future, where S is the amount of
time the job receives service. If the server is busy, the job is added to the queue.
After Q units of time, the job ahead of this one in the queue will complete service
(and process a departure event at time T + Q). That departure event schedules a new
departure event for this job S time units into the future. The departure event also
schedules an arrival event at the current time (the delay to move between stations is
assumed to be zero) denoting the departing job's arrival a the next station.

One can optimize the simulation program shown in Figure 3.17 by eliminating
the departure event. An optimized program is shown in Figure 3.18. Exploiting the
fact that the station uses a first-come-first-serve policy, one need only maintain a
state variable called Done indicating when the server would have served all jobs
currently in the queue. If anew job arrives at time T and T is greater than Done,
then the server must be idle when the job arrives, and the newly arriving job
completes service at time Now+S. Otherwise, the server is busy until the time stored
in the Done variable. The newly arriving job will therefore depart at time Done+S.
In either case the departure event can be eliminated because it is not needed to
determine when the job departs. It should be noted that this optimization relies
heavily on the fact that a first-come-first-serve service discipline is used. The
optimization would not be possible with other disciplines, such as last-in-first-out or
preemptive scheduling, because the departure time of the job depends on what other
jobs arrive subsequent to this one.

The simulation program shown in Figure 3.17 has poor lookahead properties
because LP1 must advance to simulation time T + Q+ S before it can generate the
new arrival event with time stamp T + Q+S. The LP has zero lookahead with
respect to scheduling this event. On the other hand, the simulation program shown in
Figure 3.18 has good 100kahead because the program attempts to schedule events far
into.the simulated future, Oneway,of viewing lookahead is to observe that the arrival
event at time T + Q + S is invariant to any other events occurring in the interval
[T, T+ Q+ 9. This alows the event to be generated at time T.

These two-programs exhibit dramatically different performance. Performance
measurements of the execution of each of these simulation programs in modeling the
central server queting network in Figure 3.19 are shown in Figure 3.20 and Figure
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/*
* Now = current simulation time
* S = service time for job
* Done = time server will become idle
*/
Arrival Event:
if (Now < Done) /* if server busy */
Done := Done+S;
schedule arrival event at LP2 at Done;
else /* server is idle */
Done := Now+S;
schedule arrival event at LP2 at Done;

Figure 3.18 Optimized queuing network simulator for first-come-first-serve queues.

3.21. These measurements show the performance of the parallel simulator using the
deadlock detection and recovery algorithm executing on a shared-memory multi-
processor with five processors, one for each of the logical processes shown in Figure
3.19. A closed queuing network is simulated, with the number of jobs circulating
among the queues left as a parameter.

Nerg fork

'——>

Figure3.19 Central server queuing model. The fork module routes incoming jobs to one of
its output ports. Here, jobs are equally likely to be routed to either port. The merge module
joi ng\pgeninyamehaer joogimto a single output stream.
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Figure 3.20 Number of messages processed between deadlocks for parallel simulation of
central server queuing network for the simulation programs shown in Figure 3.17 and Figure
3.18.

Figure 3.20 gives the number of messages that are processed between deadlocks
for different numbers of jobs. This number should be maximized, since deadlock
represents an overhead that does not occur in a sequential execution. Shown are
curves for the classical implementation using both arrival and departure events and
the optimized version using only arrival events. The service time is selected either
deterministically or from an exponentially distributed random variable. 1t can be seen
that when there are more than a few jobs circulating through the network, the
simulation application that is optimized to exploit lookahead is far more efficient
than the unoptimized simulation; that is to say, deadlocks occur much less
frequently. The speedup measurements in Figure 3.21 show that the optimized
simulation executes two to three times faster than the sequential execution for
reasonably large job populations, but the unoptimized version executes much more
dowly than the sequential execution.
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Figure 3.21 “Speedup relative to; & sequential execution of the paralel simulation of the
central server queuing network.
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Figure 3.22 Performance of the null message agorithm for synthetic workloads with
different degrees of lookahead.

The curves for the optimized simulation in Figure 3.20 illustrate a kind of
"avalanche effect." This means that the efficiency of the simulator is poor for small-
message populations but improves dramatically once the population reaches a
certain critical level.

It should be highlighted that the simulation used in these experiments was one
where it was possible to design the application to exploit lookahead. The resulting
simulation program is somewhat "fragile" in that seemingly modest changes in the
model, such as the addition of job preemption invalidate this optimization.

Figure 3.22 shows the speedup obtained for an experiment using the null message
algorithm in executing a synthetic workload. The workload consists of a collection
of LPs configured in a toroid topology. A fixed number of messages migrates at
random throughout the network. Each event schedules exactly one new event. The
distribution used to select the time stamp of the new event was a parameter in these
experiments. Lookahead is characterized by a value called the Inverse Lookahead
Ration (ILAR) which is defined as the minimum of the time stamp increment
divided by its mean. High ILAR values (up to 1.0) correspond to good lookahead,
while low values correspond to poor lookahead. As can be seen, dramatically
different performance results are obtained depending on the ILAR value, which
indicates the lookahead in the simulation.

311 SUMMARY AND CRITIQUE OF CONSERVATIVE MECHANISMS

This chapter introduced the synchronization problem which has been afoca point of
much of the work to date concerning the execution of analytic discrete event
simulation programs on parallel and distributed computers. The central goal of the
synchronization algorithm is to satisfy the local causality constraint, namely to
ensure that each LP processes events in time stamp order. Once this has been
accomplished, one can ensure that the concurrent execution of the simulation
progranvwyiih anathata. tensame results as a sequential execution. This chapter
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focused on conservative synchronization algorithms that prevent the local causality
constraint from ever being violated.

The key observation made in the origina Chandy/Misra/Bryant null message
algorithm (Bryant 1977; Chandy and Misra 1978) was that the principal information
each LP must derive is alower bound on the time stamp (LBTS) of messages that it
may later receive. Armed with this information, the LP can then determine which
events can be safely processed. The failing of these initial algorithms was in only
utilizing the current simulation time of each LP and lookahead information in
computing LBTS values. Without any additional information the best one was able
to guarantee was the smallest time stamped message produced by an LP was its
current time plus lookahead. This information was then conveyed to other LPs in the
form of null messages. The resulting cycles of null messages could severely degrade
performance.

Newer agorithms circumvented this problem by also including information on
the time stamp of the next unprocessed event in computing LBTS vaues. This
allowed the synchronization protocol to immediately advance simulation time to the
time stamp of the next unprocessed event, just as sequential simulators are able to
do. Collecting next event information in this way is much more straightforward if the
computation is stopped at a barrier because a snapshot of the entire simulation can
be easily made, greatly simplifying the task of determining the smallest time-
stamped event in the system. Synchronous agorithms such as Lubachevsky's
bounded lag (Lubachevsky 1989), Ayani's distance between objects algorithm
(Ayani 1989), and the synchronous algorithm described in Section 3.5.5, which is
similar to Nicol's YAWNS protocol (Nicol 1993) and Steinman's Time Buckets
protocol (Steinman 1991), dl exploit this fact. Implementing a barrier, and making
sure that there are no transient messages in the system when the barrier is realized
then becomes important, at least on distributed memory machines where transient
messages may arise and be difficult to detect. A barrier mechanism developed by
Nicol provides a solution to this problem (Nicol 1995).

Underlying al of these techniques is the requirement that the simulation contain
good lookahead properties, or there is little hope of achieving much concurrent
execution, except in specialized cases such as when there are many events with the
same time stamp. Different restrictions may be placed on the behavior of the parallel
simulator in order to make lookahead information more easily known to the
synchronization protocol. Examples include specifying the topology among logica
processes, thereby restricting which LPs may send messages to which others, or
specifying distances between LPs. While first-generation algorithms utilized restric-
tions such as no dynamic creation of processes or static network topologies, and
required messages sent over a link to have nondecreasing time stamps, these
limitations were not fundamental_to_conservative algorithms and could be overcome
by various technigues. Similarly it was observed that techniques could be developed
that ensure simulation executions could be repeated (Mehl 1992).

Conservative synchronization algorithms have advanced to a state where they are
viable'for use in real-world ‘simulation problems. Nevertheless, some fundamental
limitations of these algorithms exist. | Perhaps the most obvious drawback of
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conservative approaches is that they cannot fully exploit the concurrency that is
available in the simulation application. I it is possible that event E, might affect Eg
either directly or indirectly, conservative approaches must execute Ea and Eg
sequentialy. If the simulation is such that E, seldom affects Eg, these events
could have been processed concurrently most of the time. In genera, if the worst
case scenario for determining when it is safe to proceed is far from the typical
scenario that arises in practice, the conservative approach will usualy be overly
pessimistic, and force sequential execution when it is not necessary. In this sense
conservative algorithms use a "Murphy's law" approach to executing the simulation:
any possible scenario that could lead to violation of the local causality constraint
must be prevented.

Another way of stating this fact is to observe that except in a handful of special
cases such as feed-forward networks without cycles, conservative algorithms rely on
lookahead to achieve good performance. If there were no lookahead, the smallest
time-stamped event in the simulation could affect every other pending event, forcing
sequential execution no matter what conservative protocol is used. Consider a fully
connected network topology. |f the logical process furthest behind in the simulation
is a time Tg and that LP has a lookahead of L, then the simulation executive can
only guarantee the safety of those events whose time stamp lies in the interval
[Ts, Ts T L]. In effect, the lookahead defines a time window where events with time
stamp within this window can be safely processed concurrently. The larger that Lis,
the more events there are that can be processed concurrently. Characteristics such as
preemptive behavior diminish the lookahead properties of the simulation. Conser-
vative algorithms struggle to achieve good performance when the simulation
application has poor lookahead, even if there is a healthy amount of parallelism
available.

A related problem faced by conservative methods concerns the question of
robustness. Seemingly minor changes to the application may have a catastrophic
effect on performance. For example, adding short, high-priority messages that
interrupt "normal" processing in a computer network simulation can destroy the
lookahead properties on which the model relied to achieve good performance,
leading to severe performance degradations. This is problematic because experi-
menters often do not have advance knowledge of the full range of experiments that
will be required, so it behooves them to invest substantial amounts of effort to
parallelize the application if an unforeseen addition to the model a some future date
could invalidate al of this work.

Perhaps the most serious drawback with conservative simulation protocols is the
requirement that the simulation program be designed to maximize its lookahead to
achieve acceptable performance. A natural approach to programming an LP is to
have it update dtate variables as the LP advances, and generate "state update"
messages with time stamp equa to the LPs current simulation time for those
variables of interest to other LPs. This leads to simulations with zero lookahead,
which in tum may limit concurrent execution to only those events that have the same
time stamp. To increase |ookahead, the modeler must design the simulation program
ot aaa neecich seervpdates at an earlier simulation time; then the messages
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can be generated in advance with a suitable lookahead value. Further it is up to the
modeler to guarantee that it can generate events sufficiently far in advance so that
lookahead guarantees made to the simulation executive can be maintained.

Ideally one would separate the development of the simulation application from
the mechanisms used in the underlying simulation executive. For example, sequen-
tial simulation programs normally do not need to be concerned with the data
structure used to implement the pending event list. Writing the application in away
to maximize its lookahead often leads to a complex, "fragile," code that is difficult
to modify and maintain. Thus far, techniques to automatically determine the
lookahead in the application or restructure the simulation code to improve lookahead
have had only limited success.

3.12 ADDITIONAL READINGS

Independently Chandy and Misra (Chandy and Misra 1978) and Bryant (Bryant
1977) developed the original null message algorithm that bears their names. Early
work in defining the synchronization problem and determining conditions for
deadlock are also described in Peacock, Wong et d. (1979). Variations on the null
message agorithm, including many aimed at reducing the number of messages that
are generated are described in Misra (1986), Bain and Scott (1988), Su and Seitz
(1989), Ca and Turner (1990), DeVries (1990), Preiss, Loucks et d. (1991), Yu,
Ghosh et d. (1991), and Blanchard, Lake et d. (1994). Other early proposals for
synchronization algorithms are described in Reynolds (1982), Nicol and Reynolds
(1984), Groselj and Tropper (1988), Jones, Chou et d. (1989), and Zeigler and Kim
(1996). A categorization of agorithms, both conservative and optimistic, is
discussed in Reynolds (1988). The scheme to use hidden fields in the time stamp
to order simultaneous events is taken from Mehl (1992).

The deadlock detection and recovery agorithm is described in Chandy and Misra
(1981), and the Dijkstra/Scholton algorithm for detecting deadlock is described in
Dijkstra and Scholten (1980). A variation on this algorithm that detects local
deadlocks (deadlocks among a subset of the logical processes) is described in Liu
and Tropper (1990). Limitations of the amount of parallelism that can be extracted
by these algorithms in simulations of queueing networks are described in Wagner
and Lazowska (1989).

Early experimental work discussing empirical performance evaluations of the null
message and deadlock detection and recovery algorithms are described in Reed,
Malony et d. (1988) and Fujimoto (1989), demonstrating the importance of
lookahead in_achieving_speedup. Work in detecting and improving the lookahead
properties of simulation applications, often with good success in speeding up the
computation are described in Grosel] and Tropper (1986), Nicol (1988), Cota and
Sargent (1990);-Lin and Lazowska (1990); and Wagner (1991).

Theimportance ofiutilizing information concerning the next unprocessed event,
in addition to only considering the current simulation time of each LP, has been long

m
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recognized in the fidd. This is articulated in Chandy and Sherman (1989) where a
synchronization algorithm called the conditional event algorithm is described.

Algorithms using global synchronizations to determine events that are safe to
process began to appear in the late 1980s. Lubachevsky's bounded lag algorithm
(Lubachevsky 1989) was perhaps the firg, with the distance between objects
algorithm appearing shortly thereafter (Ayani 1989). The synchronous protocol
described in Section 3.5.5 is similar to the two protocols that appeared in 1990, the
YAWNS protocol analyzed in Nicol (1993) and the Time Buckets protocol described
in Steinman (1991). Barrier algorithms and mechanisms to eliminate transient
messages are in the general parallel computation literature. The butterfly barrier
algorithm described here is based on the algorithm described in Nicol (1995).
Connection transfer protocols to dynamically change LP connections are described
in Bagradia and Liao (1994) and Blanchard and Lake (1997).
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I CHAPTER 4

Time Warp

Conservative synchronization algorithms avoid violating the local causality
constraint, whereas optimistic algorithms allow violations to occur but provide a
mechanism to recover. Jefferson's Time Warp mechanism was the first and remains
the most well-known optimistic synchronization algorithm. Although many others
have been proposed, many of the fundamental concepts and mechanisms used by
these algorithms such as rollback, anti-messages, and Global Virtua Time (GVT)
first appeared in Time Warp. This chapter describes the fundamental ideas intro-
duced in Time Warp and the associated algorithms for its efficient implementation.

The term optimistic execution refers to the fact that logical processes process
events, "optimistically" assuming there are no causality errors. Optimistic execution
has long been used in other computing applications, in some cases prior to it being
proposed for simulation. Two other uses include:

 Distributed database systems. When several clients of a database system
simultaneoudly initiate transactions on the database (for example, to update
an inventory of spare parts), a concurrency control algorithm is required to
ensure that the fina result is the same as if the transactions were performed in
some seria order. One approach to accomplishing this is to have transactions
optimistically proceed as if no conflicts (read and write accesses to the same
record) occur. If a conflict is later detected, one of the transactions is aborted,
and restarted later. Database concurrency control is in many ways similar to
synchronization of parallel simulations, with the important distinction that any
ordering of transactions in database systems is usualy acceptable. These
systems need only to ensure that transactions appear to be atomic, namely
that the result after concurrently processing the transactions is the same as if
each were completed in sequence, one after the other. In parallel simulations
causal relationships in the physical system dictate the order in which events
must be completed, o it is definitely not the case that any order will do.

» Microprocessors. Most modem microprocessors use optimistic processing
because of an implementation technique called pipelining. With pipelining,
the microprocessor begins processing the next instruction (specifically, fetch-

WWiy. tRRERT dateidn from memory) before completing the current instruc-
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tion. This is problematic if the current instruction is a conditional branch, since
it is not known which instruction should be fetched next until the current
instruction has (amost) completed execution. Many modem microprocessors
predict the result of the branch instruction (branch taken or not taken) and
optimistically begin executing instructions according to this prediction. Of
course, if the prediction provesto be incorrect, the CPU must have some way to
"back out" of the incorrect sequence of instructions that it began to execute.

Returning to parallel simulation applications, recall that the central problem faced
by alogical process is that it may have one or more messages that it has received
from other processes but cannot be sure that it is safe to process these events because
doing so might later result in violating the local causality constraint. Optimistic
synchronization protocols process events even though their safety cannot be
guaranteed, and they provide some mechanism to "back out" these computations
should a causdlity error (out of order event processing) be detected.

41 PRELIMINARIES

Like the conservative synchronization algorithms, the simulation computation is
again assumed to be composed of a collection of logical processes that commu-
nicates exclusively by exchanging time-stamped messages. There are no State
variables that are shared between logical processes. Communications among loglcal
processes are assumed to be reliable; that is to s_y,mg_ssagctha is sent
eventually arrives at the receiver. A logical process nee@send messages in time
stamp order, and the communication network need%t}guarantee that messages are
delivered in the same order in which they were sent.'Further, logical processes may
be created or destroyed during the execution, and there is no need to explicitly
specify which LPs communicate with which other LPs.

Initialy, to simplify the discussion, it is assumed that the simulation has nonzero
lookahead; namely an LP a simulation time T can only schedule events with time
stamp strictly greater than T. It will be seen later that with some simple precautions,
zero lookahead simulations can be allowed.

The Time Warp agorithm consists of two distinct pieces that are sometime called
the local control and the global control mechanisms. The local control mechanism is
implemented within each processor, largely independent of the other processors. The
global control mechanism is used to commit operations such as 1/O that cannot be
rolled back and to reclaim memory resources; it requires a distributed computation
involving dl of the processors in the system.

4.2 LOCAL CONTROL MECHANISM

The behavior of each logical process in a Time Warp system can be described in
relation to a sequential simulation. Recall that a sequential simulator contains a data
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Figure 41 Events in Time Warp logicd process when a straggler message arrives.

structure called the event list that includes al events that have been scheduled but
have not yet been processed. A Time Warp logical process (TWLP) can be viewed in
exactly the same way, except for two differences:

» The events in the TWLPs event set may result from messages sent to this LP
from other LPs.

» The TWLP does not discard events after processing them but rather keeps the
processed events in a queue. This is necessary because the TWLP may rall
back, in which case previously processed events will have to be re-processed.

A TWLP showing both the processed and unprocessed events is depicted in
Figure 4.1. Each event processed by the TWLP is placed at the end of the
"processed” part of the event list. Because events are processed in time stamp
order, events in this list will be sorted by time stamp. The white events in Figure 4.1
with time stamps 12, 21, and 35 have aready been processed by the LP, and the
black event with time stamp 41 has not yet been processed. The TWLP's clock is a
simulation time 35 in this snapshot, and is about to advance to 41.

As in a sequential simulator, the TWLP will repeatedly remove the smallest time-
stamped unprocessed event from the event list and process that event. Unlike a
conservative simulation executive that must first verify that an event is safe, TWLP
makes no such check, and blindly (optimistically) goes ahead and processes the next
event. This means that the TWLP may later receive a message in its padt, that is, a
message with time stamp smaller than the clock value of the TWLP.'® Such "late"
arriving messages are referred to as strazgler messages. Figure 4.1 shows a straggler
message arriving at a TWLP, with timé stamp 18, indicating that a violation of the
local causality constraint has occurred.

Events with a time stamp larger than the straggler were processed incorrectly
because the state of the LP did not take into account the processing of the straggler
event. Thus in Figure 4.1 the events with time stamps 21 and 35 were processed
incorrectly. Time Warp addresses this problem by rolling back or "undoing" the
computations for the time stamp 21 and 35 events, and then re-processing these
events (the straggler at time 18, and the rolled back events at times 21 and 35) in
time stamp order.

10 WARAN TOATDA EBE8RIC O ENts have unique time stamps. This issue will be discussed later.
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The central question that must be answered is how does one "undo" an event
computation? Consider what an event computation can do. 1t may do one or both of
the following:

1. Modify one or more state variables.
2. Schedule new events, namely send messages to other logical processes.

Thus a mechanism is required to undo changes to state variables and to "unsend"
previously sent messages. Each of these is described next.

4.2.1 Rolling Back State Variables

There are two widely used techniques to undoing modifications to state variables that
are commonly used in Time Warp systems:

1 Copy state saving. The TWLP makes a copy of al of the modifiable state
variables within the LP. Typicdly a copy is made prior to processing each
event, but as will be discussed later, the copying could be performed less
frequently. Figure 4.2(a) depicts the state-saving and restoration process for
the rollback scenario shown in Figure 4.1. The LP's gtate in this example
includes three variables, X, Y, and Z that hold the values 1, 2, and 3,
respectively, after processing E,, (the event with time stamp 12). Event E,,
writes anew value, 4, into X, and E5; writes 5into X and 9 into Z. As shown
in Figure 4.2(a), dl three state variables are copied into memory associated
with an event just before that event is processed. When the straggler message
with time stamp 18 arrives, the LP's state is restored to the state of the LP at
time 18, the state which existed prior to processing E,,. The rollback causes
the snapshot associated with E, to be copied back into the LPs state
variables, effectively undoing the modifications to the state variables made
by E,; and Eg5.

2. Incremental state saving. A log recording changes to individual state variables
is kept for each event computation. Each record in the log indicates (a) the
address of the state variable that was modified, and (b) the value of the state
variable prior to the modification. To roll back modifications to state variables
performed by an event, the Time Warp executive scans the events being rolled
back in the order of decreasing time stamps. For each event the Time Warp
executive goes through that event's log, last record to first, and copies the value
saved in the log entry to the corresponding state variable. For example, the
rollback scenario shown in Figure 4.1 using incremental state saving is shown
in Figure 4.2(b). The log for E;; contains the record (adr(X), 1) where adr(X)
indicates the address of variable X, and the log for Es5 contains the records
(adr(X)s*4) and (adr(2), 3). As shown in Figure 4.2(b), rolling back these
events will restore (1) Z t0:3,(2) X to 4, and (3) X to 1, yielding the original
values that existed prior to processing Ey «
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Figure4.2 Undoing modifications to state variables. (a) Copy state method; (b) incremental
state saving.

If most of the state variables are modified in each event, copy state saving is more
efficient because one does not need to save the addresses of individual variables, and
many machines are optimized to efficiently copy large blocks of data. On the other
incremental state saving will be more efficient because it only saves those gtate
varigbles that were actually modified. These two techniques are not mutually
exclusive. Some Time Warp systems use copy state saving for variables that are
modified frequently, and incremental state saving for other variables that are

modified infrequently, with the choice of state-saving technique for each variable
typically left to the application programmer.

Whether copy state saving or incremental state saving is used, some amount of
state information is associated with each event. The collection of state information
for Wirpveventewitiiaanddiis referred to as the state queue. The events themselves,
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both the processed and unprocessed events, are stored in a data structure called the
input queue.

4.2.2 Unsending Messages

At firgt glance, undoing a message send seems rather complex. This is because an
incorrect message may have aready been processed by another LP, resulting in the
generation of additional incorrect messages that have been processed by till other
LPs, which results in ill other incorrect messages, and so on. The incorrect
computation could have spread throughout the entire simulation, requiring a
mechanism to undo al of the effects of these computations!

Perhaps the most elegant aspect of the Time Warp mechanism is a simple
mechanism called anti-messages used to undo message sends. The name "anti-
message" comes from an analogy with particle physics concerning matter and anti-
matter. In physics, when an atom of matter comes in contact with an atom of anti-
matter, the two annihilate each other and disappear. Similarly, for each message sent
by a TWLP, an anti-message is created. The anti-message is logically an identical
copy of the original (positive) message, except it contains a flag identifying it as an
anti-message. When amessage and its corresponding anti-message are both stored in
the same queue, they are both deleted and their storage is reclaimed. The process of
combining message/anti-message pairs is referred to as message annihilation.

To "unsend" apreviously sent message, an LP need only send the matching anti-
message to the same TWLP to which the original message was sent. This impliesthe
TWLP must keep a log of what messages it has sent, <0 it can later send anti-
messages, if necessary. Each TWLP defines a data structure called the output queue
for this purpose. Whenever a message is sent, the corresponding anti-message is left
in the sender's output queue. If an event is rolled back, any anti-messages stored in
the output queue for that event are sent.

The example shown in Figure 4.1 is continued in Figure 4.3 to show the
operations that take place when a rollback occurs. The straggler message causes
E21 and E; to be rolled back. The state of the LP is restored using the information
stored in the state queue, and the memory used for this saved state information can
now be reclaimed. E,, and E,; are marked as unprocessed events. In this example,
Ex generated one message, E,,, S0 the anti-message for E4 is removed from the
output queue and sent. The find state of the LP after the rollback has been processed
is shown in Figure 4.3(b).

Now consider what happens when a logical process, LPA' receives an anti-
message. There are three cases to consider:

1" The corresponding positive message has not yet been processed. In this case
the message and anti-message pair can both be annihilated, and removed from
LPA's input queue, and the storage used for these messages can be reclaimed
(see Figs 4.4).

2. The corresponding.positive message has aready been processed. In this case
LPA Is rolled back to the point just prior to processing the about-to-be-
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2. restore state of LP to that prior to processing time stamp 21 event
Input Queue 3. roll back events at times 21 and 35
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Figure 4.3 Rollback caused by receiving a straggler message. (Top) Actions performed to
rall back the LP; (bottom) fina state of the LP after the rollback.

canceled positive message (see Fig. 4.5). Once the rollback has been
performed, the message and anti-message pair can be annihilated, just as in
case 1. Thisrollback caused by receiving an anti-message in the TWLP's past
is referred to as a secondary rollback (the initia rollback resulting from the
original straggler message is called a primary rollback). The secondary

%‘@ 1. anti-message arrives, annihilate
message and anti-message
Input Queue
(event list)
D processed event
State Queue unprocessed event

D saved state

anti-message

Output Queue
(anti-messages)

BEFORE

Input Queue
(event list)

State Queue

Qutput Queue
(anti-messages)

AFTER

Figure 4.4 Receiving an anti-message, positive message has not yet been processed. (Top)
M essaja/MfNaEsIR @l @Mihilated; (bottom) find state of queues after annihilation.
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1. anti-message arrives, roll back E,, and E45
3. annihilate message and anti-message

Input Queue
(event list) N 4

42
45 D processed event
I I I unprocessed event
D saved state
=

=] anti-message

State Queue

Output Queue
(anti-messages)

BEFORE

Input Queue
(avent list)

State Queue 4. resume execution by processing event at time 45

Output Queue
(anti-messages)

AFTER

Figure 45 Receiving an anti-message, positive message has dready been processed. (Top)
Roallback action prior to processing message, annihilated message/anti-message pair; (bottom)
find state of queues after annihilation.

rollback may generate additional anti-messages, which may in tum cause
further rollbacks (and anti-messages) in other logical processes. Recursively
applying this "roll back, send anti-message" procedure will eventually erase
al incorrect computations resulting from the original, incorrect message send.

3. The corresponding positive message has not yet been received by LPa. This
could occur if the communication network does not guarantee that messages
are received in the same order that they were sent; in this case the anti-message
could reach LPa before the original positive message. If this occurs, the anti-
message is placed in the input queue. When the corresponding positiv.e
message is received, it will aso be placed in the same queue as the antl-
message, 0 the two will annihilate each other. This scenario is depicted in
Figure 4.6. No rollbacks occur in this scenario, even if both the anti-message
and positive message are in the past of the receiver.

The mechanism described above enables the Time Warp mechanism to recover from
incorrect message sends.

Itrissinstructive toviewsassnapshot-ofithe Time Warp execution as a space-time
graph such as that shown in Figure 4.7. The boxes represent event computations, and
the X -Y coordinates of each box indicate the event's time stamp and the TWLP that
processes, the event, respectively. Solid arcs represent event scheduling (message
sending) relationships; that is, ‘an arc from event £1 to £2 denotes the fact that the
computation for g1 scheduled event £2' Successive events within an LP are
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Figure 4.6 Receiving an anti-message when the positive message has not yet been received.
(Top) Place anti-message in input queue (no rollback occurs); (bottom) when a postive
message arrives, annihilate message/anti-message pair.

connected by dashed arcs indicating dependencies between events due to accesses to
common state variables (it is assumed successive events within the same LP aways
depend on each other in this way). An event E, is dependent on another event E, if
there is a path of arcs (using either state dependence and/or scheduling dependence
arcs) from E; to E,- When an event E is rolled back, all events that depend onE are
either rolled back (if they have been processed) or canceled via the anti-message
mechanism.

Assuming nonzero lookahead, scheduling arcs must aways move from left to
right in the space-time diagram. Similarly state dependence arcs also move from left

—
scheduling dependence

E
slate dependence

O not dependent on E

* dependent on E

simulation time

Figure 4.7 Spacetime diagram depicting a sngpshot of a Time Warp execution and
depelitidiéd Ardng dat&Om
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to right.n This implies that the graph represented in the space-time diagram is
acyclic, and traversing the dependence arcs aways moves one from left to right in
the graph.

One can observe the following properties of the Time Warp execution from the
space-time diagram:

1. Rollbacks always propagate into the simulated timefuture. Because rollbacks
spread along the scheduling and state dependence arcs in the graph, the
rollback always spreads from left to right in the graph. Viewed another way, if
a TWLP rolls back to simulated time T, all anti-messages sent as a result of
this roll back must have atime stamp strictly larger than T (recall the nonzero
lookahead assumption). Thus any rollbacks caused by these anti-messages will
be to a smulation time greater than T. Subsequent rollbacks resulting from
anti-messages generated by this secondary rollback must similarly roll back
other TWLPs to successively larger simulated times. This property is
important because it shows that one cannot have a domino effect where an
initia roll back causes the entire computation to eventualy be rolled back to
the beginning of the simulation.

2. At any instant during the execution, the computation associated with the
smallest time-stamped message or anti-message in the system that has not yet
been completed will not be later rolled back. The computation associated with
an anti-message is the annihilation of the message/anti-message pair. | f there
is more than one computation containing the smallest time stamp, the above
statement applies to at least one of these computations. Intuitively the smallest
time-stamped computation cannot be rolled back because rollbacks propagate
from left to right in the space-time graph, and there is no computation to the
left of the leftmost uncompleted computation in the graph. Thus there is
nothing that can cause this computation to be rolled back. This property is
important because it shows that so long as the Time Warp system has a
scheduling mechanism that eventually executes the lowest time-stamped
computation, the execution aways make forward progress, so no deadlock
situations can occur.

4.2.3 Zero Lookahead, Simultaneous Events, and Repeatability

Consider two simultaneous events (events containing the same time stamp) within a
single TWLP. If one event has been processed when a second containing the same
time stamp arrives, should the processed event be rolled back and re-executed? As
will be seen momentarily, if an event rolls back other events containing the same
time stamp and zero lookahead is alowed, the simulation may fail.

Suppose that zero lookahead is alowed, and it is designated that a straggler does
roll back other.already processed events containing the same time stamp. Consider

i In'the case of events containing-the .same:time stamp (simultaneous events), the LP places some
arderinol of thesel events Which is used to preserve the |eft-to-right nature of the state dependence arcs.
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simulation time

Figure 4.8 Cyclic dependence among three events containing the same time stamp.

the scenario shown in Figure 4.8. Event Ex at LPa schedulesEy at LP_, which in
tum schedules Ez back to LPA. Suppose that all three events contain the same time
St{{{’@ Ez will roll back Ex, since they have the same time stamp. Rolling back E,
Will cancel Ey, Which will in tum cancel E,. When Ex is re-executed, it will again
genergte Ey, which Will generate E,, this will again roll back E = causing the
cancelletIOn of Ey and Ez, and 0 on. The simulation will reﬁéat this cycle
indefinitely.

Tl_le unending rollback cycle occurs because there is a cycle in the dependence
arcs m the space time diagram. Rolling back Ex when E, arrives impliesthat E s
state dependent on Ez. This means there is a cycle fr Ey 0 E, 10 E Xjg
scheduling dependence arcs (see Fig. 4.8), and then from Lback to Ey via aZdate
dependence arc. Dependence cycles such as this must be eliminated to avoid
unending rollback scenarios such as that described above.

One way to address this problem is to simply designate that a straggler message

not roll back other already processed events containing the same time stamp

1? prevents rollback cycles. :%eﬁ%f Simultaneous events are delivered to the
LPm Fhe order that they were received. The disadvantage of this approach is that the
€Xecution may not be repeatable, since the events may arrive in a different order
d_u“ng the next execution. To ensure repeatability, the TWLP must first collect al
simultaneous events, and then order them itself in a repeatable fashion, such as by
sortmg on some characteristic of the event.

Angther approach is to alow an event to roll back some events containing the
Same time gamp but to ensure that an event never rolls back another event on which
It IS either scheduling dependent or indirectly scheduling dependent. An event r is
indirectly scheduling dependent on another event E; if there is a path of ojng/
scheduling dependence ares from E; to E, . This approach bresks the cycle in Figure

8 because Ez is indirectly scheduling dependent on Ex, so using this rule, E
“4hnot roll back Ex- ThiS approach can be realized by extending the time stamp 0

2 It rmghg be noted that receiving an anti-message at time T could still cause another message in the same
LP Witime/s{n@Nad Ae-dl@ Back; however, because rollback cycles must begin with a straggler
message that is regenerated wlthm the rollback cycle, this does not lead to an unending cycle.
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the event with an additional age field, like that described in Chapter 3, where the age
was used to order simultaneous events. Like the time stamp fidd, the larger the age
field, the later is the event. Thus the age can be viewed as an extension of the time
stamp field that provides additional, lower precision digits. Recall that the age-is
assigned as follows: Suppose that an event Ex with time stamp Ty contains an age
Ax, and Ex schedules another event Ey with time stamp Ty and age Ay. If Ty > Ty,
thenAyis 1. If Ty = Tx' then Ay is Ax + 1. Thus, if one considers the tree formed
with simultaneous events as nodes and (direct) scheduling dependencies as arcs, the
age indicates the level of the event in the tree.

In Figure 4.8, EX, Ey, and E; would be assigned ages 1,2, and 3, respectively.
Because E, has alarger (later) age than Ex; E; does not cause Ex to be rolled back.
Note that there may be two or more events containing both the same time stamp and
age; for example, if Ex aso scheduled another event Eyy, with time stamp Ty, then
both Eyy and Ey would have the same time stamp and age. An additional field is
required if unique time stamps are required, for example, to guarantee repeatability
of the execution. In the TWOS (Time Warp Operating System) developed at the Jet
Propulsion Laboratory, the body of the message itself was used as the identifier; the
only "ties" that can occur are when the messages themselves are identical, in which
case, the order doesn't matter. Another approach, discussed in Chapter 3, isto use
the tuple (LPs, 1) where LPs identifies the logical process sending the message and |
is a sequence number indicating the number of events scheduled by LPg, excluding
message sends that have been rolled back (i.e., canceled by sending the correspond-
ing anti-message).

Using the approach with an age field, but no additional fields to specify an
ordering among events with the same time stamp and age, one can till specify that
an event rolls back a processed simultaneous event with the same (or greater) age.
This dlows the application to explicitly order simultaneous events with the same
time stamp and age according to its own criteria. The system will automatically
guarantee events that are directly or indirectly scheduling dependent on this event
will not result in unending rollback cycles.

To summarize, these techniques enable the Time Warp system to schedule zero
lookahead events. Unending rollback cycles can be prevented by either specifying
that a straggler message does not roll back events containing the same time stamp or
by using an age fidd. By itsdlf, neither of these techniques guarantees repeatable
executions. Repeatability can be obtained through the use of an additional, unique,
identifier field in the time stamp, or by requiring the application to collect and order
simultaneous events in a repeatable fashion.

4.3 GLOBAL CONTROL MECHANISM

The local control - mechanism described above is sufficient to ensure that the
execution yields the same results as if the simulation were executed sequentially
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and all events were processed in time stamp order. However, two problems must be
addressed before this can be regarded as a viable mechanism:

1. The computation consumes more and more memory throughout the execution
via the creation of new events, but it seldom releases memory! A mechanism
is required to reclaim memory resources used for processed events, anti-
messages, and state history information that is no longer needed. Reclamation
of memory holding history information is referred to asfossil collection.

2. Certain operations performed by the simulation computation cannot be rolled
back. Specificaly, once 1/0 is performed, it cannot be easily undone.

Both of these problems can be solved if one can guarantee that certain events are no
longer prone to roll back. For example, if one could guarantee that no roll back will
occur to asimulated time earlier than T, the history information for events with time
stamps smaller than T could be reclaimed. Similarly I/O operations generated by
any event with a time stamp less than T could be performed without fear of the
operation later being rolled back. Thus the solution to both of the problems cited
above is to determine a lower bound on the time stamp of any future rollback. This
lower bound is referred to as Global Virtual Time (GVT).

From the local control mechanism it becomes immediately apparent that a TWLP
only rolls back as the result of receiving a message, which is either a positive
message or an anti-message, in the TWLP's past. Observe that positive messages can
only be created by unprocessed (or partially processed) events. Therefore, if one
could capture a snapshot of the Time Warp system, the minimum time stamp among
al anti-messages, positive messages, and unprocessed and partially processed events
N the system represents a lower bound on the time stamp of any future rollback.
Observe that a positive message in transit to a TWLP holds an unprocessed event.
Therefore Globa Virtual Time is defined as follows:

Definition Global Virtua Time at wallclock time T (GVTT) during the execution
of a Time Wap simulation is defined as the minimum time stamp among all

unprocessed and partially processed messages and anti-messages in the system a
wallclock time T.

h Flgures 4.2, 4.3, and 45 illustrate that if the TWLP isrolled back to time T only
e IsOry mformatlOn (specifically state information and anti-messages) for the
CVents that are rolled back is needed. Therefore memory for events with time stamp
stnctly less than GVT and the anti-messages and state information associated with
these events can be reclaimed. Memory associated with events with time stamp equal
(f) thF‘ GVT value cannot be reclaimed, however, even if the Time Warp system is
efined g, gt a straggler message with time stamp T does not roll back other events
with t’me stamp equal to T. Thisis because GVT could be equal to the time stamp of
an anti-message that has not been processed (i.e, annihilated), so such an anti-
Pemgge could require one to roll back events with time stamp exactly equal to GVT
see H
WV?/W manaraa.com
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Figure 49 Example where the information in an event with time stamp equd to GVT is
needed. Here, GVT is 42, and there are two processed events with time stamp 42. In the fird,
the TWLP processed is canceled by an anti-message with time stamp egud to GVT.

43.1 Fossil Collection

Most Time Warp systems compute GVT periodicaly (for example, every few
seconds), or when the simulation runs out of memory. There are two common
approaches to reclaiming memory:

* Batch fossil collection. When fossil collection is performed, the Time Warp
executive in each processor scans through the event lists of al of the TWLPs
mapped to that processor, and reclams the memory used by events (and
associated state information and anti-messages).

» On-thefly fossil collection. When GVT is computed, the system does not
immediately reclaim memory. Instead, processed events are placed into alist of
events, typically managed as a FIFO queue. When memory for a new event is
required, the Time Warp executive allocates memory from this list but only
reallocates the storage for an event if the time stamp of that event is less than
GVT. This approach avoids a possible time-consuming search through the
event lists of the TWLPs in order to perform fossil collection.

4.3.2 Error Handling

Unlikesconservative simulationssystems, if a simulation program executing on a
Time Warp executive produces an. error (for example, performs a divide by zero
operation), the program cannot simply be aborted. This is because the error may
later be erased by arollback operation. When an error occurs, it is flagged, and the
TWLPiis blocked so that it will*not process any additional events. If the error is not
erased by arollback; it is committed when GV T advances past the simulation time at
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which the error occurred. The program can then be aborted and the user can be
notified of the error.

The tricky aspect of error handling is to ensure that the error itself can be erased.
Different countermeasures are required for different types of errors. Below we
enumerate some possible errors and how they can be handled:

» Program detected errors. These are errors in logic and inconsistencies detected
by the simulation program itself. For instance, it may be that a certain state
variable should never take on a negative value (for example, the number of
aircraft waiting to land at an airport). As a precautionary measure the program
might periodically test this variable to make sure that it has not been assigned a
negative value, as a check for a programming bug that could cause the
simulation to reach an incorrect state. This is the most straightforward type
of error to address. The Time Warp executive can provide an abort primitive
that marks the logical process as being in an error state 0 that no more events
are processed by that TWLP. As described earlier, if the error is erased by a
rollback, the process can be returned to the "normal" dtate. If the error is
committed, the program is then aborted.

« Infinite loops. |f the program enters an infinite loop, a mechanism is required to
break out of the loop if a message is received that would cause the event
containing the infinite loop to be rolled back. This can be accomplished by
using an interrupt mechanism to handle incoming messages. Alternatively, a
cal into the Time Warp executive might be placed in each loop of the
application program that could become an infinite loop. This cadl must
check to see if any messages were received that would roll back the event
that is now being processed. If such an event is detected, the processing of the
current event should be aborted, and the rollback processed.

» Benign errors. These are errors that do not result in the incorrect modification
of any memory other than checkpointed state variables. Examples include
arithmetic errors such as dividing by zero, taking the square root of a negative
number, or an illegal memory reference (for example, to a location within the
operating system) that is aborted by the operating system's memory protection
mechanisms. A mechanism is required to pass control to the Time Warp
executive when such errors occur. Support must be provided by the operating
system or the language's runtime system. For example, the Ada language
provides a mechanism to execute user (or in this case, Time Warp executive)
code when such an error occurs. Similarly programs written for the Unix™
operating system can specify code that is executed when a signal is raised,
denoting such exceptions. Once the error has been detected and control is
passed to the Time Warp executive, the error can be handled in the same way as
a program-detected error.

* Destructive errors. Destructive errors are those that result in the modification
of state that is not checkpointed; for example, an errant pointer reference or

Viiiihganaéaad@ BN array could modify internal data structures within the
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Time Warp executive. Because the Time Warp executive is usually viewed by
the operating system as part of the application program, such an error does not
typically result in a trap, as would occur if (say) the program attempted to
overwrite a memory location within the operating system. These are the most
problematic types of errors because once the state has been erroneously
modified, it is difficult to recover from such an error. A brute force solution
is to checkpoint dl memory that can be modified by the application without
causing atrap in the operating system, such as al state used by the Time Warp
executive. Another approach is to provide explicit runtime checks for such
errors (for example, array bounds checks or adding code to check that memory
writes only modify checkpointed state), effectively converting the error to a
program detected error. Such checks are only required on references using
memory addresses that are computed at runtime. Minimizing use of computed
addresses (for example, not performing arithmetic on pointers to compute
addresses) reduces the likelihood of destructive errors.

44 COMPUTING GLOBAL VIRTUAL TIME

GVT computation is a close cousin to the lower bound on time stamp (LBTS)
computation discussed in Chapter 3 for conservative synchronization. GVT
computes a lower bound on the simulation time of any future rollback. But as
noted earlier, rollback only occurs when an LP receives amessage or anti-message in
its (simulation time) past, so the value relevant to each LP is a lower bound on the
time stamp of messages/anti-messages that may arrive in the future. This is
essentially the same as the LBTS value computed by conservative agorithms.

Differences between LBTS and GVT computations stem largely from (1)
different underlying assumptions concerning topology among logical processes
and lookahead, and (2) different performance requirements. Regarding the former,
Time Warp systems usually assume that any LP can send messages to any other LP
and that there is zero lookahead. Conservative algorithms usually make more
stringent assumptions regarding topology and lookahead that they can then exploit
to minimize blocking among LPs. An LBTS computation where one assumes a fully
connected topology and zero lookahead is essentially the same as a GVT computa
tion.

With respect to different performance requirements, LBTS in conservative
systems must be computed often, and very rapidly, because processors may be
idle and waiting for it to complete. This is typicaly not the case in optimistic
systems where-processorsroptimisticallysprocess events and need not wait for the
GVT computation to. complete, so long as|they do not run out of memory or need to
commit /O operations very. quickly. Thus simpler, but perhaps higher-latency
algorithms may be adequate, or even preferred in optimistic systems. Here, we focus
on_algorithms”developed specifically for \computing GVT. These same algorithms
can, in principle, be used to compute LBTS, and conversdly, the LBTS algorithms
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discussed in the previous chapter can be used to compute GVT, provided that one
adheres to their underlying assumptions.

From the definition of GVT, it is clear that if one could capture in a snapshot al
unprocessed (and partialy processed) events and anti-messages in the system at
wallclock time T, computing GV T, would be trivia. There are two challenging
problems associated with making such a snapshot. They are referred to as the
transient message problem and the simultaneous reporting problem. Each of these is
described next, followed by a discussion of algorithms for efficiently computing
GVT.

441 Transient Message Problem

Suppose that one could instantaneously "freeze" al processors in the system, have
each report its local minimum among the unprocessed events and anti-messages
within that processor, and then compute a global minimum from these values. This
algorithm would not compute a correct value for GVT. The reason is that while al of
the processors are "frozen," there may be one or more messages "in the network,"
namely messages that have been sent by one processor but have not yet been
received a its find destination. As shown in Figure 4.10, such messages may result
in rollbacks. Thus it is clear that these so-called transient messages must be included
in the GVT computation, or an error results. This problem is referred to as the
transient message problem.

There are essentially two approaches to solving the transient message problem:
(1) Have the sender take into account the time stamp of transient messages when it
reports its local minimum, or (2) have the receiver to take into account the time
stamp of transient messages when they arrive. The latter approach requires one to
provide a mechanism to determine when all relevant transient messages have been
received. An approach using message counters will be described later. We first
discuss solutions using the former approach.

One simple solution to the transient message problem is to use message
acknowledgments. The key idea is to ensure that every transient message is
accounted for by at least one processor when GVT is being computed. It is

controller —=-~y~-—gg ~""""-"-~7°

Messages
I\ 15[ 0
\‘/ . - —» Compute-Local-Minimum

- - 9 value of local minimum
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Figure 4.10 Transient message problem. Processors Pa and pH compute their local
minimums to be 15 and 20, respectively. If the transient message is not considered, GVT

will BAWAMEBIRINBFRAEQREN 5, when it should be 10.
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acceptable for more than one processor to account for a single message because this
would not affect the global minimum computation. 1f an acknowledgment is sent for
every message, the sender of each message is responsible for accounting for the
message in its local minimum until the acknowledgment is received. The receiver
takes responsibility for the message as soon as it receives the message. This
handshake between the sender and receiver ensures that no transient messages
“fall between the cracks" during the GVT computation.

A simple, synchronous GVT algorithm using acknowledgments can now be
described. This agorithm uses a central controller to initiate the GVT computation,
compute the global minimum, and report the computed GVT tO other processors
Specifically, the algorithm takes the following steps: the

1. The controller broadcasts a " Start-GVT" message, instructing each processor
in the system to initiate a GVT computation.

2. Upon receiving the Start-GVT message, each processor stops processing
events, and issues a "Received-Start message” to the controller. The processor
blocks until receiving another message from the controller.

3. When the controller has received a "Received-Start" message from every
processor, it broadcasts a "Compute-L ocal-Minimum" message.

4. Upon receiving the "Compute-Local-Minimum" message, each processor
computes the minimum time stamp among (a) the unprocessed events and
anti-messages within that processor and (b) the minimum time stamp of any
message the processor has sent but has not yet received an acknowledgment.
This minimum vaue is sent to the controller.

5. When the controller has received the local minimum from each processor, it
computes a global minimum and broadcasts this value to each processor.

Using this approach, the scenario in Figure 410 will result in Py reporting 10
instead of 15 &s its local minimum because it will not have received an acknowl-
edgment for the time stamp 10 message it has sent. Thus the controller will correctly
compute the GVT to be the value 10.

4.4.2 Simultaneous Reporting Problem

An important drawback to the synchronous GVT computation described in the
previous section is the need to block every processor in the system (see step 2) inthe
interval between receiving the "Start-GVT" message and the "Compute-Local-
Minimum" message. Some processors may be delayed in responding to the Start-
GVT message because they were processing an event when the message arrived,
potentially delaying al processors in the|system, since the controller must receive a
response from all before issuing the Compute-Local-Minimum message. 13 A better
approach would be to allow:processors to continue processing events while the GVT

13 This could be circumvented by using an interrupt mechanism, however.
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computation is in progress, that is, to use an asynchronous computation that does not
require global synchronization points.

One might suggest a simple asynchronous GVT algorithm where the controller
simply broadcasts a Compute-L ocal-Minimum request to dl of the processors, and
then simply collects these values and computes a global minimum. Processors may
process events asynchronously while the GVT computation is in progress. This
simple approach does not work, however, because it introduces a problem known as
the simultaneous reporting problem. Intuitively this problem arises because not dl
processors will report their local minimum at precisely the same instant in wallclock
time. This can result in one or more messages "slipping between the cracks"; that is,
one or more unprocessed messages may not be accounted for by either the processor
sending or receiving the message.

A scenario illustrating the simultaneous reporting problem is depicted in Figure
4.11. The controller broadcasts the Compute-Local-Minimum message. Processor
Pa receives this message and reports its local minimum is 35. The Compute-L ocal-
Minimum message that is sent to processor Py is delayed in the communications
network, however, and does not arrive until some time laer. In the mean time, P
sends a message to Pa with time stamp 30 and then moves on to begin processing
another event with time stamp 40. At this point P receives the Compute-Local-
Minimum message and reports its loca minimum is 40, the time stamp of its next
local event. The controller computes an incorrect GVT value of 35 (minimum of 35
and 40) because it failed to take into account the time stamp 30 message. The
scenario shown in Figure 4.11 could still occur even if message acknowledgments
were used.

The basic problem is that accounting for dl unprocessed messages in the system
becomes more complicated if processors are alowed to process events and generate
new ones while the GVT computation is in progress. In Figure 4.11, Pa cannot take
into account the time stamp 30 message in its local minimum computation because it
had not even received the event when its local minimum was computed. P, does not
take this event into account in its local minimum computation because it believes
that the message is PA's responsibility, since the message was generated (and
acknowledged if message acknowledgments are used) well before it computed its
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Figure 4.11 Simultaneous reporting problem. The time stamp 30 message is not accounted
for, westwTEanareREecig T value of 35 being computed.
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local minimum. Thus the time stamp 30 message is not accounted for by either
processor.

4.4.3 Samadi's GVT Algorithm

This algorithm assumes that message acknowledgments are sent o.n every message
and anti-message sent between processors. As discussed earher, the sendmg
processor is responsible for accounting for each message it has sent until it receives
the acknowledgment, thereby solving the transient message problem.

The simultaneous reporting problem is solved by having processors tag any
acknowledgment messages that it sends in the period starting from when the
processor reported its local minimum until it receives the new GVT vaue. This
identifies messages that might "slip between the cracks" and notifies the sender that
it (the sender) is responsible for accounting for the message in its local minimum
computation. Thus, in Figure 4.11, Pa will tag the acknowledgment it sends for the
time stamp 30 message it received from PB' Pg includes in its loca minimum
computation (1) the minimum time stamp among the unprocessed message or anti-
message stored within the processor, (2) the minimum time stamp among .the
messages it has sent for which it has not yet received an acknowledgment (l.e,
transient messages), and (3) the minimum time stamp among the tagged acknowl-
edgment messages the processors received since the last GVT computation. Thus, in
Figure 4.11, if the (tagged) acknowledgment for the time stamp 30 message reaches
Py before it reports its local minimum, this message will be included m the local
minimum computation by (3) above. If the acknowledgment is received after Py
reports its local minimum, this message will still be included by Py in its loca
minimum computation because the message was a transient (unacknowledged)
message when Py reported its local minimum. Either way, Pg will account for the
message.

More precisely, Samadi's GVT algorithm operates as follows.

1. The controller broadcasts a Compute-L ocal-Minimum message to dl proces-
sors to initiate the GVT computation.

2. Upon receiving the Compute-L ocal-Minimum message, the processor sends
the controller a message indicating the minimum time stamp among all
unprocessed events within the processor, al unacknowledged message.s and
anti-messages it has sent, and al marked acknowledgment messages It has
received since it last received anew GVT value. The processor now sets a flag,
indicating it is infind mode.

3aForeach message;oranti-message received by the processor while it is in find
mode, the processor sends a marked acknowledgment message indicating the
time stamp of the message it|is acknowledging. An unmarked acknowl-
edgment message is sent for al messages received while not in find mode.

4. When the controller receives a local minimum value from every processor in
the system, it computes the minimum of all these values as the new GVT and
broadcasts the new GV T to all processors in the system.
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5. Upon receiving the new GV T value, each processor changes its status so that it
is no longer in find mode.

It can be shown that this algorithm computes a new value of GVT that is no larger
than the true GVT value at the instant the controller broadcast the Compute-Local -
Minimum message to initiate the GVT computation.

4.4.4 Mattern's GVT Algorithm

One drawback with Samadi's algorithm is that it requires an acknowledgment
message to be sent for each message and anti-message. The underlying commu-
nications software may automatically send acknowledgments for messages in order
to implement the reliable message delivery service being used by the Time Warp
executive; however, such acknowledgments are typically not visible to the Time
Warp executive. Instead, a separate application-level acknowledgment message must
be sent to implement Samadi's agorithm.

Like Samadi's algorithm, Mattern's GV T algorithm is also asynchronous. That is
it avoids global synchronizations, but it does not require message acknowledgments.
The basic idea in the algorithm is to cleanly divide the distributed computation by a
"cut" that separates it into a "past" and "future." As shown in Figure 4.12, each
processor defines a point in its execution called a cut point, with al actions
(computations, message sends, and message receives) before a processor's cut
point (in wallclock time) referred to as being in that processor's past, and all actions
occurring after the cut point referred to as occurring in that processor's future. The
st of cut points across al of the processors defines a cut of the distributed
computation. A consistent cut is defined as a cut where there is no message that
was sent in the future of the sending processor and received in the past of the
receiving processor. Graphicaly, if each message is represented as an arrow, this
means there is no message arrow extending from the future part of the graph to the
past part. Figure 4.12(a) shows a consistent cut and Figure 4.12(b) shows an
inconsistent cut. The latter cut is inconsistent because of the message sent from Pc's
future to PD's past.

A snapshot taken along a consistent cut includes the local state of each processor
a its cut point and dl transient messages crossing the cut-namely al messages sent
in the past part and received in the future part of the computation. A key observation
is that the snapshot of the computation taken along a consistent cut can be used to
compute GVT. To see this, consider the execution of the synchronous GVT
algorithm discussed earlier. Specificaly, let each processor's cut point in Figure
4.12(a) represent the wallclock time a which it received a "Compute-Local-
Minimum" message. Recall that in the synchronous GVT algorithm, this message
causes the processor to "freeze," that is, not perform any new computations or send
or receive any additional messages. The processors then compute GVT based on a
cut defined at one instant in wallclock time after all the processors have been frozen;
see MGHNY ANSBRRR: €REN the synchronous GVT algorithm correctly computes
GVT... where T is the wallclock time of the cut points in Figure 4.12(c).
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Figure 4.12 Cuts dividing the distributed computation into past and fugure parts. (a) A
consistent cut; (b) an inconsistent cut; (c) cut for computation shown in (a) using the
synchronous GV T agorithm so that dl cut points correspond to the same point in wallclock
time.

Now suppose that rather than freezing each processor at its cut point, we allow
each processor to compute forward; that is to say, we compute GV T asynchronously,
as in Figure 4.12(a). Assume that the cut in the asynchronous algorithm is a
consistent one. The set of transient messages in the synchronous snapshot is exactly
the same as the set of transient messages in the asynchronous one because (1) any
message in the synchronous snapshot will (obviously) also appear in the asynchro-
nous one and (2) the asynchronous snapshot cannot include any additional messages
because any such message crossing the cut must have been sent by a processor after
its cut point, which would cause the cut to become inconsistent. Similarly it is clear
that the local snapshot taken by each processor in the asynchronous algorithm will
be identical to that in the synchronous algorithm because the consistent nature of the
cut.prevents.any.new.events.appearing.in the asynchronous snapshot that did not
appear in the synchronous one. Thus an asynchronous algorithm that computes GV T
based on the consistent cut in Figure 4.12(a) will compute GV Tr, the same value
computed by the synchronous algorithm.

From 'the -above 'discussion ‘it is |clear that if the asynchronous cut were not
consistent, the snapshot based on that cut would not match that used in the
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corresponding execution using the synchronous algorithm. For example, in Figure
4.12(b), the snapshot defined by the inconsistent cut includes a message in Po's local
state that would not exist in the snapshot obtained by the synchronous GVT
algorithm.

Happily, an asynchronous GV T algorithm need not construct a consistent cut. It
can simply ignore all messages that would make the cut inconsistent. These
messages can be ignored because they must have a time stamp larger than the
GVT computed using the consistent cut. To see this, observe that the time stamp of
any message (or anti-message) sent by a processor after its cut point at wallclock
time T must be at | east as large as the minimum of (1) the smallest time stamp of any
unprocessed event in the processor at time T and (2) the smallest time stamp of any
message received by the processor after time T. The computed GV T value must be
less than or equal to both of these quantities, so the time stamp of any inconsistent
message must be larger than the computed GV T value.

Thus, to compute GVT, one needs to only identify (1) the smallest time-stamped
unprocessed event within each processor at its cut point and (2) the smallest time
stamp of any transient message crossing the cut from the past to the future. The
difficult part is determining the set of transient messages without using acknowl-
edgments. This can be accomplished by utilizing two cuts, as shown in Figure 4.13,
and computing the GV T along the second cut, C2. The purpose of the first cut is to
notify each processor to begin recording the smallest time stamp of any message it
sends; these messages may be transient messages that cross the second cut and must
be included in the GVT computation. The second cut is defined in a way to
guarantee that there are no messages generated prior to the first cut that still have not
been delivered to the destination processor. This guarantees that all transient
messages in the system crossing the second cut must have been sent after the first
cut and thus have been included in the GVT computation.

Processors are said to be colored to denote where they are with respect to the two
cuts. Initially processors are colored white. After the first cut point is reached, the
processor's color changes to red. After the second cut point, the processor returns to
the white color. Messages that are sent while the processor is white are called white

e cut point
white

red

Cl Cc2

wallclock time

Figure 4.13 GV T computation using two cuts. GV T is based on the snapshot defined by the
secondpwi. B2anaraa.com
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messages, and messages sent while the processor is red are called red messages. By
design, all white messages must be received prior to C2. Thus, al transient messages
crossing C2 must be colored red. The set of messages crossing C2 is a subset of al
red messages. Thus the minimum time stamp among dl red messages is a lower
bound on the minimum time stamp of al transient messages crossing C2.

GVT is computed as the minimum among (1) dl red messages, and (2) the
minimum time stamp of any unprocessed message in the snapshot defined by C2.
This can be done by each processor based on loca information. Thus the only
guestion that remains concerns defining C2 0 no white message crosses C2.

C1 can be constructed by logically organizing the processors in a ring, and
sending a control message around the ring. Upon receiving the control message,
each processor changes color from white to red, and passes the control message to
the next processor in the ring. Once C1 has been fully constructed, it is guaranteed
that no new white messages are being created. C2 can be constructed one processor
a a time by sending the control message around the ring again. However, a
processor Pi will not forward the message to the next processor in the ring until it
can guarantee that there are no more white messages destined for Pi' This can be
determined as follows:

1. Compare the number of white messages sent to Pi'
2. Compute the number of white messages received by Pi'

3. Wait for these two numbers to be the same (i.e., wait until all sent messages
have been received).

For 1 each processor keeps a counter indicating the number of white messages
sent to Pi' These counters are accumulated within the control message as it circulates
among the processors during the construction of C1. After the control token has
visited every processor, the sum in the token indicates the total humber of white
messages that were sent to Pi' This total value is passed to Pi during the construction
of C2, again viathe control token. For 2, Pi keeps a counter indicating the number of
white messages it has received (from any processor). When this second counter is
equal to the number of messages sent to Pi received in the control token, Pi knows it
has received dl of the white messages, so0 it can then pass the token to the next
processor in the ring.

Counters indicating the number of white messages sent to a processor, and the
number of white messages received by the processor must be maintained for every
processor in the system. Thus a vector of counters is required by each processor.
Specifically, processor Pi maintains a local vector counter Vi such that V() (i #j)
indicates the number of white messages sent by Pi to Pj' ¥;(,/) is a negative number
that'denotes themnumber of whiteimessages received by V. When V() + > Vi()),
(J #1) < 0, then P, “has received al of the white messages that were sent to it.

Each processor maintains the following loca variables:

1. Tmin'is defined as the smallest time stamp of any unprocessed message in the
processor.
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2. T, is defined as the smallest time stamp of any red message sent by the
processor.

3. Vi is the vector counter for processor Pi' as defined above.

4. Color is the current color of the processor, white or red.

The GVT agorithm can now be described. Each message includes a flag indicating
its color (white or red). On each message send, processor Pi executes

send (Color, time_stamp) to P
if (Color = white)
then v; (j) = Vvi(3) + 1;
else T,eq = Min (T,eq. time_stamp)

When a message is received by a processor Pi it executes

if (Msg.color = white)
then Vi (i) = Vi() - 1;

The control message contains three fields:

1. CMsg_Tmin recording the minimum time stamp value among unprocessed
messages among processors that the control message has visited thus far.

2. CMsg_T,q recording the minimum time stamp of any red message sent by a
processor (among the processors that the control message has visited thus far).

3. CMsg_Count is the cumulative vector counters among the processors visited
thus far. CMsg_Count[i] indicates the number of white messages sent to Pi
that have not yet been received (number of transient messages).

When the control message is received by P,, it executes the following procedure:

if Color=white then

Tred := 00;

Color := red;
wait until Vi[iJ + CMsg_Count[i]=<0;
send (mMin (CMsg_Tmin. Tmin), MiN (CMSY_T,cq. Treq) -

Vi + CMsg_Count)

to next processor in ring;
Vi = 0;

The GVT computation can be initiated by a controller. When the controller
receives the control message after the first round, it first checks if CMsg_Count

is 2emAf Mhamangra.@emo transient messages, so the GVT is the smaller of
CMsg-T,;, and CMsg_T,. If not, the controller initiates a second round.

in
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45 OTHER MECHANISMS

The local and global control mechanisms described above form the heart of the Time
Warp mechanism. A number of additional mechanisms are often included in Time
Warp systems to provide added functionality, such as to support dynamic alocation
of memory or to optimize performance. Several such mechanisms are described
next.

451 Dynamic Memory Allocation

The discussion thus far has implicitly assumed that all of the memory used for state ;

variables in the simulation is alocated before execution begins and is not released
until execution completes. Simulation programs often allocate additional memory
for state variables during the execution of the smulation. For example, a smulation
of a factory might require additional memory to hold information concerning new
components created within the factory. Sequential simulation programs can obtain
additional memory by calling a memory allocation procedure defined by the
operating or runtime system for the program. For example, C programs may cdl
the malloe () procedure to allocate additional memory. Similarly an additional
procedure may be invoked by the program to return memory that is no longer used,
for example, the free () procedure for C programs. To facilitate the presentation,
the discussion that follows refers specifically to cals to malloe () to alocate
memory and free () to release memory, however the mechanisms that are
discussed apply generically to any dynamic memory alocation and release proce-
dure.

Some precautions must be taken when using dynamic memory allocation and
release procedures in Time Warp systems, or for that matter, any parallel simulation
system using rollback for synchronization. Suppose that the application cdls
malloe () and free () directly without informing the Time Warp executive of
calls to these procedures. Two problems may arise:

* An invocation of malloe () may be later rolled back. Since rollbacks are
transparent to the application, it is impossible for the TWLP to call free () to
release this memory. Further, assuming that the pointer to this memory was
saved in checkpointed state variables, the rollback would have erased any
pointers to the dynamically allocated memory so that memory could be
referenced by the TWLP. Thus a "memory leak" occurs where memory has
been allocated but cannot be referenced or returned to the system.

s ARginvecation,of f ree()mmaysbeolled back. The origina cal to free ()
will have released the memory. to the system. This memory may have since
been reallocated by mal | oe () 1o another logical process. When free () is
rolled back, the first process in effect declares that it did not actually release
this' memory, leading to 'the awkward situation that two different logical
processes are how using the same memory a the same time for completely
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different purposes! This will typically lead to unpredictable, and difficult to
locate, bugs in the program.

The firgt problem resulting in a "memory leak" leads to an inefficient use of
memory but does not cause incorrect results to be produced by the simulation. It
could cause the program to prematurely exhaust al available memory resources,
resulting in an aborted execution that would not have otherwise occurred. This
problem can be solved by having the Time Warp executive note each cal to
malloe () andinvoke free () whenever acall to malloe () isrolled back. This
could be implemented by defining a new procedure called TWmalloe () that is
caled by the application instead of malloe () . TWmalloe () would simply call
malloe (), and then note the call to malloe () in the data structure for the event
that is now being processed. The Time Warp executive would cdl free () for any
such cals to malloe () made by each event that it rolls back.

The second problem is perhaps more serious in that it can result in an execution
error, or worse, the simulation to produce incorrect results but otherwise appear to be
correct. Further this error may be difficult to reproduce because the same sequence
of rollbacks may not appear on subsequent executions. This problem can be solved
by treating calls to free () the same as cals to 1/O procedures. Namely the
memory is not actualy returned to the system until GVT advances beyond the time
stamp of the event that called free () . Operationaly, this could be implemented by
defining a new procedure called TWfree () that is called by the application rather
than free () . The Time Warp executive maintains alist of calsto TWfree () that
have been made by each TWLP but have not yet been committed. TWfree () adds a
new entry to this list but does not call free () to release the memory. If the event
caling TWfree () isrolled back, the corresponding call is removed from the list of
uncommitted TWfree () cals. This list is scanned when fossil collection is
performed, and the memory is reclaimed by caling free () for any cdl to
TWfree () with time stamp less than GVT.

Finaly, like any memory used to hold state variables, dynamically allocated
memory must be checkpointed. This memory could be copy state saved by having
the Time Warp executive maintain a list of dynamically allocated memory locations
for each TWLP and automatically make a copy of this state prior to processing each
event. Alternatively, incremental state saving can be used. Because the incremental
state-saving mechanism does not need to distinguish between dynamically allocated
memory and memory that was allocated before execution began, this mechanism
operates no differently than what was described earlier.

45.2 Infrequent State SaVing

The copy state-saving mechanism discussed earlier makes a copy of all of the
modifiable state variables used by the logical process prior to processing each event.
Making a copy of the state vector before each event may consume large amounts of
time and memory. Incremental state saving provides an efficient mechanism to
redud8/MésB GVatEad QM atively small portion of the state is modified by the

N
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event computation. However, incremental state saving becomes more expensive than
copy state saving ifmost of the TWLPs state is modified by each event,14 since copy
state saving can perform block moves to save and restore state. Copy state saving
does not need to store the address of each variable that is modified (only a single
address must be stored) if the state variables are stored in contiguous memory
locations.

An alternative approach is to use copy state saving, but save the state of the
logical processes less frequently than prior to every event. For example, a copy state
save operation might be performed every kth event. This approach is referred to as
infrequent state saving. This technique is more attractive than incremental state
saving if most of the state of the logical process is modified by each event.

The rollback mechanism defined earlier must be modified to accommodate
infrequent state saving because the state of the logical process at the simulation
time of the rollback may not have been saved. Instead, the process must be rolled
back to an earlier simulation time where the state of the L P was saved, and the events
reprocessed in order to recreate the desired state.

For example, Figure 4.14 depicts arollback scenario where the state is saved after
every third event. The state of the process prior to processing the time stamp 12
event was saved, but the state prior to processing the events with time stamp 21 and
35 was not saved. A straggler message containing time stamp 26 arrives. Since the
state of the LP at simulation time 26 (the state prior to processing the time stamp 35
event) was not saved, the state of the LP must be restored to that at simulation time
12, prior to processing the time stamp 12 event. The events with time stamps 12 and
21 must be reprocessed to reconstruct the state at simulation time 26. Reprocessing
events in order to reconstruct the desired state vector is referred to as the coast-
forward phase, and is only required when infrequent state saving is used. The coast-
forward computation increases the cost of state restoration, thereby increasing the
time to perform a rollback, and it is an additional cost associated with infrequent
state saving. The other computations associated with rollback, namely sending anti-
messages, processing the straggler, and reprocessing other rolled-back events
(besides those involved in the coast-forward computation), must still be performed
just as was the case when a state save operation was performed prior to processing
each event.

"Coast-forward" events such as those at time stamps 12 and 21 in Figure 4.14
must be treated differently from other events being rolled back. In particular, it is
imperative that (1) no anti-messages be sent when rolling back coast-forward events
and (2) no positive messages be sent when reprocessing events during the coast-
forward phase. Thus, in Figure 4.14, the anti-message with time stamp 24 must not
be sent. Suppose that the logical process were to send anti-messages for coast
forward.events:Then.this.scenario.depicts a case where arollback to time 26 causes

14 Empirical measurements report that incremental state saving is slower than copy state saving when more
than approximately 20% of the state variables are modified for certain simulations of telecommunication
networks. 1n general, however, the "crossover point,” where incremental state saving starts to become
more expensive, is implementation and application dependent.
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3. restore state of LP to that prior to processing time stamp t2 event
4. reprocess events with time stamp 12 and 21 (coast forward)
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Figure4.14 Rollback scenario using infrequent state saving. Note that the anti-message with
time stamp 24 is not sent for this rollback, but the anti-message with time stamp 38 is sent.

an anti-message with time stamp 24 to be sent, which could cause a secondary
rollback to time 24, a time earlier than the original rollback. This could produce a
new wave of cancellations and rollbacks with even smaller time stamps, leading to a
domino effect that could roll back the computation beyond GVT. This clearly cannot
be alowed. Designating that no anti-messages be sent for coast-forward events, and
discarding positive messages generated during the coast-forward phase, eliminates
this problem.

How often should one checkpoint if using infrequent state saving? The above
discussion correctly points out that infrequent state saving is double edged. On the
one hand, it reduces the number of state save operations that must be performed,
favoring very infrequent state saves. On the other hand, rollbacks become more time-
consuming because of the need to recreate the required state, a cost that aso
increases the less frequently one performs state saving. It can be shown that if one
assumes that the behavior of the Time Warp execution (i.e., the frequency of
rollbacks and number of events that are rolled back, excluding coast forward events)
does not change as the state-saving frequency is varied, then my,' the number of
events processed between state-saves, should be set in the range:

+
Mopt < Mopt < Mgy,

Where

=
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and

20+ DA
’”?th{\/ga—eL]

and « is the number of events processed between rollbacks when state saving is
performed after each event (or eguivalently, the number of events executed by the
process divided by the number of rollbacks when state saving is performed after each
event), A is the cost to perform a state save (i.e,, to copy the state vector), and e isthe
expected execution time for an event (Lin, Preiss et d. 1993).

4.5.3 Specifying What to Checkpoint

For any checkpointing frequency, copy state saving can be realized transparent to the
application program™ once the Time Warp executive has determined which memory
locations need to be saved. The Time Warp executive will automatically have this
information if the storage for state variables is alocated within the Time Warp
executive. Alternatively, if storage for the state variables is alocated within the
application itself, the application must pass the location of its variables to the Time
Warp executive. This latter approach is usualy preferable if one is modifying an
existing simulation program to operate on a Time Warp system because the memory
allocation scheme used within the application can remain the same. Similarly the
Time Warp executive must be notified whenever the set of checkpointed memory
locations changes, such as if memory is dynamically allocated or released during the
execution of the program. I copy state saving is used, this can be done transparent to
the application for dynamic memory allocation and release because such mechan-
isms must be handled within the Time Warp executive, as discussed earlier.

Incremental state saving is more difficult to implement transparent to the
application program. This is because unlike copy state saving, the Time Warp
executive must checkpoint avariable each time it is modified. But how does the Time
Warp executive know when avariable is modified? There are severa approaches that
can be used:

» Manual checkpointing. The application programmer can be required to insert a
cal to the Time Warp executive prior to each modification of each state
varigble. Actudly, if a variable is modified many times while processing a
single event, the Time Warp executive needs to be notified only on the first
modification, though no harm is done (except with respect to efficiency) by
checkpointingrasvariablesmoresthan once within an event. The cdl into the
Time Warp executive must specify the address of the state variable and the
contents of that variable prior to modifying it. This information is then entered

15 This means the application program need not explicitly perform any action for state saving to be
performed, once the Time Warp executive has determined which locations to state save.
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into the incremental state save log. The primary advantages of this approach
are that it smplifies the Time Warp executive and is easy to implement. The
principal disadvantages are that introducing such state saving calls can be
tedious and prone to errors.

Compiler/pre-processor checkpointing. A variation on the manual checkpoint-
ing approach is to automate the process of inserting the calls to the Time Warp
executive. This can be accomplished by a pre-processor that scans through the
application program, inserting calls to the Time Warp checkpointing routine as
necessary, or within the program compiler itself. To minimize the number of
unnecessary checkpointing calls, a control flow analysis of the program can be
performed so that a checkpoint call is only inserted the first time the variable is
modified, but (ideally) not on subsequent modifications. It may not be possible
to avoid al unnecessary checkpoint calls, however. The principal advantage of
this approach is that it relieves the application programmer of the responsibility
for inserting incremental state-saving cals. The principal disadvantage is the
cost of developing and maintaining a specialized pre-processor or compiler.
Overloading the assignment operator. Many languages, especially object-
oriented programming languages, alow the application program to redefine
primitives such as the assignment operator (= in many languages). This
operator can be redefined to perform an incremental state-saving operation
before modifying the program variable. 1t is more difficult to avoid unneces-
sary checkpoints to variables with this technique. One approach is to maintain
some information with each state variable to indicate if it has already been
modified by this event. For example, one could store the time stamp of the last
modification with each variable and check this information prior to check-
pointing it. The time required to check this information, however, could be
almost as large asjust blindly checkpointing the event, so the principal savings
with this approach is reducing storage required to maintain the log, and
reducing the time to restore the state after rollback. The principal advantages
of overloading assignment operators are that it frees the application program-
mer from checkpointing each call and it is simpler to implement than building
a compiler, preprocessor, or (as discussed next) a program for editing the
executable. The principal disadvantage is this approach can only be applied to
programming languages that support overloading of the assignment operator.
C++ is perhaps the most well-known language that supports this capability.
Other widely used languages such as C do not provide this facility.
Executable editing. Another approach to inserting incremental state-saving
cals is to edit the file containing the executable for the program. The
executable contains a representation of the machine instructions for the
program. Thus this approach is similar to the pre-processor approach, but it
operates on the machine-level representation of the program rather than the
high-level language. Many modem reduced-instruction-set-computers (RISC)
use a "load-store" architecture where the only instructions accessing memory
are load and gtore instructions. For these CPUs the program editing the
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executable needs only to examine store instructions, and if the store corre-
sponds to amodification of a state variable, machine instructions are inserted to
checkpoint the variable before it is modified. Some technique must be used to
identify those store instructions modifying state variables. For instance, if the
Time Warp system does not allow automatic variables stored on the stack to be
state variables, all modifications made by event-processing procedures to
nonstack variables can be checkpointed. The same techniques may be used
for non-load-store machine architectures, but a wider variety of machine
instructions must be examined to catch dl modifications to state variables.
Like the pre-processor/compiler approach, flow analysis can be used to
eliminate unnecessary checkpointing operations. The central advantages of
this approach are that it is less language dependent compared to the prepro-
cessor/compiler and operator overloading approaches and can be applied to
libraries of compiled code that must be checkpointed, but for which the source
code is not available. The central disadvantages of this approach are that it is
machine dependent and may not be easily ported to new architectures.

The principal advantages and disadvantages of these approaches to incremental
state saving are summarized in Table 4.1. There is no one approach that is clearly
superior to the others for al circumstances and situations. The manual and operator
overloading approaches are perhaps the most commonly used techniques today.

45.4 Event Retraction

Recall that event retraction refers to a mechanism, invoked by the application
program, to "unschedule" an event that had previously been scheduled. This might
be used to implement unexpected events such as interrupts. For example, suppose
that the air traffic simulation were augmented to model in-flight re-routing of
aircraft. The logical process for the ORD airport may have scheduled an event

TABLE 41 Approaches to Incremental State Saving

Technique

Principd Advantage

Principa Disadvantage

Manua checkpointing
Pre-processor/compiler

Operator overloading

Executable editing

Easy to implement in a Time
Warp executive
Portable

Easy to implement
Not language specific, supports

sate-saving libraries where
source-code |is not available

Manud insertion is tedious and
error prone

Cogt to develop and maintain
pre-processor or compiler

Only gpplicable to languages
that support overloading the
assignment operator

Not easly ported to new
machine architectures
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denoting the arrival of an aircraft at JFK, and then receive a new message indicating
the aircraft has been re-routed to Boston because of congestion at JFK. This could be
modeled by having the ORD process retract the arrival event at JFK and schedule a
new arrival event at the process modeling Logan Airport in Boston.

At first glance, retraction and cancellation of events appear to be one and the
same. However, there is an important difference. Retractions are invoked by the
application program, so there must be a mechanism to "undo" an event retraction if
the event computation that invoked the retraction is rolled back. No such mechanism
is necessary for event cancellation, because cancellation is an operation that is
realized within the Time Warp executive.

Two approaches to implementing event retraction include:

« Implementing it at the application level, such as in a library, without providing
any additional support in the simulation executive.

» Implementing a retraction primitive within the simulation executive.

Event retraction can be implemented "on top of" an existing Time Warp
executive that does not support retraction by realizing the retraction primitive and
scheduling an event with time stamp slightly smaller than the event being retracted.
Let E denote the event being retracted, and E the event that retracts E. Both E and
Er must be processed by the same logical process. When Eg, is processed, avariable
is set in the state vector of the logical process that indicates that event E should be
ignored when it is removed from the event list for processing. The central advantage
of this approach is that it allows event retraction to be implemented with an existing
Time Warp executive that does not support this facility. The disadvantage is that this
mechanism may be somewhat less efficient than a retraction mechanism implemen-
ted within the simulation executive.

The second approach to implementing retraction is to provide a new mechanism
to retract previously scheduled events. A straightforward technique is to have the
application program send an anti-message for each event it is retracting. The Time
Warp annihilation mechanism will guarantee the event is properly canceled, and
computations depending on that event are rolled back and re-executed.

A retraction operation for an event E can be rolled back by simply re-sending the
original positive message for E. A log of retractions can be kept by placing a positive
copy of the each event that is retracted in the output queue. When the logical process
is rolled back, positive messages stored in the output queue can be sent along with
the other anti-messages.

455 Lazy Cancellation

When arollback occurs, the Time Warp mechanism described earlier in this chapter
will immediately cancel messages sent by rolled-back events by sending an anti-
messageN aneRciagaea | Ciegpmetimes the case that when an event isrolled back and
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Figure 415 Scenario demongtrating lazy cancdlation. (a) Scenario of events after smulat-

ing flight 100; (b) scenario after events for flight 200 are processed. Events for flight 200 do
not affect the arriva of flight 100 a JFK a 12:00.

reprocessed, the same message that was produced (and subsequently canceled)
during the original execution is again re-created when the event is reprocessed. In
this case it was not really necessary to cancel the original message.

For example, let us consider an air traffic simulation like that discussed earlier,
with aircraft arrival and departure events. Consider the scenario shown in Figure
4.15. An event is received, and processed, indicating that flight 100 arrived at ORD
at 9:00 Am, exchanged passengers and subsequently departed for JFK at 10:00 AMm,
and arrived a JFK at noon. The ORD process will thus send a message to the JFK
process modeling the arrival at noon. Later in the execution of the simulation, a
straggler message is received at ORD with time stamp 7:00 AM modeling flight 200's
arrival. Assume that these are the only two flights that arrive that morning.® Flight
200 then departs for another airport a 8:00 AM. Since flight 200 has come and gone
before flight 100 arrived, it is quite likely the message sent by ORD denocting flight
100's arrival a JFK at noon will not be affected by flight 200.'" However, Time
Warp will till roll back the events for flight 100, cancel the message sent to JFK
with time stamp 12:00, reprocess these events, and resend the same message back to
JFK. The cancellation of the 12:00 message at JFK will cause arollback if the JFK
LP already processed that message. It is clear the cancellation of the 12:00 message
was unnecessary.

Lazy cancellation is a technique that avoids canceling messages that are later
recreated when the events are reprocessed. When a rollback occurs either from

16 ORD only handling two aircraft in one morning is clearly unheard of, but it greatly simplifies the
presentation of this example.

17 This is not necessarily the case. For example, passengers arriving on flight 200 might then depart on
flight 100, affecting the subsequent message to JFK if that message included a passenger count. However,
the ' model” presented here does not include information such as this in its messages.
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receiving a straggler message or an anti-message in a processs past, no anti-
messages are sent. Instead, the process only sends an anti-message if the original
message was not again created when the events were reprocessed. Operationally this
can be implemented by examining each message sent during the re-execution phase,
and checking the output queue to see if that message was previoudly sent. If it was,
the new message is discarded and the anti-message remains in the output queue. If it
was not, the message is sent just as is done during "normal" Time Warp operation.
An anti-message is removed from the output queue and sent if no matching positive
message was generated during the recomputation phase, and the logical process
advances to a simulation time larger than the simulation time when the anti-message
was created. A fidd in the anti-message called the send time stamp is used to denote
the simulation time of the logical process when the anti-message was created.

For example, in the scenario shown in Figure 4.15, the events in the ORD process
for flight 200 will first be processed, resulting in the time stamp 12:00 message being
sent to JFK. The ORD process will roll back when it receives the time stamp 7:00
straggler message for flight 200. However, unlike the scenario described earlier, the
time stamp 10:00 and 12:00 events will not be canceled. This message, and the event
a 8:00, will be processed. The 9:00 event denoting the arrival of flight 100 will be
re-processed. It will again regenerate the same event with time stamp 10:00, so no
new event is scheduled. Similarly, when the 10:00 event is re-processed, it will dso
regenerate the same 12:00 event, s0 again, no new event is scheduled. Lazy
cancellation avoids canceling the 10:00 event, and more significantly, the 12:00
event. Had the 12:00 event generated by the re-execution been different from that
produced during the initial processing, or if no event were re-generated at dl, the
anti-message for the 12:00 event would be sent once the ORD logical process
advanced beyond simulation time 10:00.

The original mechanism presented earlier where anti-messages are sent as soon as
the rollback occurs is called aggressive cancellation. Lazy cancellation offers the
advantage that it avoids canceling messages that are recreated when rolled-back
events are reprocessed. This will also eliminate secondary rollbacks that occur in
aggressive cancellation when an anti-message is unnecessarily canceled. The
principal disadvantages of lazy cancellation are as follows:

1. Cancellation of incorrect computations is delayed, compared to aggressive
cancellation. In general, the sending of anti-messages is delayed until some
rolled-back events are reprocessed. This delay alows the "damage" (i.e,
incorrect computations) caused by the incorrect message to spread further than
it would had the anti-message been immediately sent. Thus more computation
may need to be rolled back when the anti-message is finaly sent.

2. Reprocessing events using lazy cancellation requires some additional over-
head computation relative to aggressive cancellation to compare messages that
are sent with anti-messages in the output queue. Also the simulation executive
must check if any anti-messages must be sent whenever the processs
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3. Lazy cancellation requires some additional memory to hold anti-messages
during the re-computation phase that would have been sent (allowing the
memory they used to be reclaimed) if aggressive cancellation had been used.

Depending on the application, performance of Time Warp using lazy cancellation
can be better or worse compared to aggressive cancellation. One can construct
scenarios where lazy cancellation outperforms aggressive cancellation by as much as
a factor of N when executing on N processors, and one can construct scenarios
where aggressive cancellation executes N times faster than lazy cancellation. Only a
limited amount of empirica data is available comparing aggressive and lazy
cancellation; however, these data suggest that lazy cancellation typically performs
marginally better than aggressive cancellation in queueing network benchmark
programs. The difference in performance that has been reported is usually somewhat
modest, however. For example, on the order of 10% to 15% relative to aggressive
cancellation is typical.

The lazy cancellation optimization does point out a noteworthy characteristic
concerning the Time Warp mechanism, and for that matter, most synchronization
protocols that have been proposed thus far. Time Warp "conservatively" assumes
that one event depends on a second event if they both are scheduled at the same
logical process, and invokes the rollback mechanism based on this assumption. |f
two events occur with a single TWLP but do not depend on each other, there is no
need to process them in time stamp order. Because Time Warp does not attempt to
analyze dependencies between events within the same process, which in general is a
very difficult problem, it cannot avoid such unnecessary rollbacks.

456 Lazy Re-evaluation

Another technique along similar lines as lazy cancellation is the lazy re-evaluation
or jump-forward optimization. Again, consider the scenario depicted in Figure 4.15.
Lazy cancellation avoided canceling and resending the time stamp 12:00 message to
the JFK process. However, even with lazy cancellation, the two events at ORD for
flight 100 with time stamp 9:00 and 10:00 will have to be reprocessed after the
rollback. If the re-processing of these events for flight 100 is identical to that in the
origina execution (i.e, if flight 100s events are completely unaffected by those for
flight 200), there is no reason to process them again after the rollback.

Lazy re-evaluation is an optimization that attemptsto exploit this fact. The central
guestion is how can the Time Warp simulation executive determine if the re-
computation of an event will be the same as the original computation? The answer is
if the state of the logical process before re-processing the event after arollback is the
same as what it was in the original execution of these events, then the recomputation
will again be the same. This assumes, if course, that each event computation is

repestable.

To implement this technigue, the saved state vector indicating the state of the
logical: process before each levent was processed must not be discarded when an
event is rolled back: During:the resexecution phase, before reprocessing an event, the
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Time Warp executive compares the state of the logical process with the state that
existed before the event was last processed, which is saved in the state queue. |f the
two are equal and the set of unprocessed events is the same as the previous
execution, the logical process can skip re-processing the events, and immediately
jump back to its state prior to when the rollback was processed. For example, in
Figure 4.15, assume again that the time stamp 9:00 and 10:00 events have been
processed when the straggler a 7:00 is received. The ORD logica process rolls
back, processes the straggler and the time stamp 8:00 event created by the straggler.
The logical process then observes that the current state of the logical process is the
same as the saved state of the process prior to processing the 9:00 event. The logical
process can restore the state of the logical process to that which existed just prior to
when the straggler arrived, mark the 9:00 and 10:00 events as processed, and resume
processing events as if the rollback never occurred.

Lazy re-evaluation is similar to lazy cancellation, except it deals with state vectors
rather than messages. It is useful when straggler events do not affect the state of the
logical process. One situation where this might occur is the query event. Query
events are intended to read state variables within a logical process and return those
values to the scheduler of the event. The main drawback with lazy re-evaluation is
the cost of comparing state vectors, and the fact that straggler events typically do
modify state variables, so often processes are not able to benefit from this technique.
If incremental state saving is used, comparison of state vectors may be cumbersome
and time-consuming, since one must examine logs to recover a snapshot of the state
of the process.

4.6 SCHEDULING LOGICAL PROCESSES

A processor will, in general, contain many logical processes. A scheduling policy is
required to select the logical process that should be alowed to execute next. Two
important questions are: When should execution change from one logical process to
another? And, when execution changes to a new logica process, which one is
allowed to execute next? While scheduling has been widely studied in general
contexts (i.e., nonsimulation applications), it merits special attention in the design of
a Time Warp simulation executive because selection of a poor scheduling agorithm
can lead to extremely poor performance.

.Nearly al existing simulation executives (both optimistic and conservative) only
shift execution from one logical process to another between, as opposed to during,
processing successive events. Possible approaches concerning when to switch
execution from one logical process to another include the following:

» Process dl lfnPfOCf?SSﬁd events for alogical process before changing execution
to another loglca process. This has the advantage that it minimizes the
frequency of chan.ging the Process that is executing, which may entail context
SWitch overheads If a process-onented simulation paradigm is used, and yields

w\stiam eeaitp apfcomamory  references, improving the performance of cache
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memories.|S However, this approach can cause some logical processes to
execute far ahead of others in simulation time, and can lead to very poor
performance. This is particularly true if a process schedules events for itsdlf.
This issue will be explored in much greater depth in the next chapter. Thus this
approach is not well suited for Time Warp executives.

» Allow execution to change to a different logical process after processing each
event. This approach is most commonly used in Time Warp executives today,
and it provides the greatest control and ensures that the "most appropriate”
logical process is executed at any instant. Selection of the "most appropriate”
logical process will be discussed momentarily.

» Allow execution to change to a different logical process after processing some
number of events. This approach is a compromise between the two approaches
described above. The "trigger" that causes the Time Warp executive to
consider switching execution to another logical process might be after the
current TWLP has processed some number of events, after it has been allocated
a certain amount of CPU time to execute, or perhaps when the current logical
process has advanced in simulation time some threshold ahead of other logical
processes.

When a scheduling decision is made, which logical process should be alowed to
execute? In principal, one would like to execute the logical process that leads to the
shortest overall execution time; however, this is impossible to predict because one
cannot know what event computations will take place in the future. A related goal is
to dlow the logical process that is least likely to roll back to execute next. From a
correctness standpoint, the scheduling mechanism must be fair in the sense that the
smallest time-stamped event in the entire simulation system must eventually be
allowed to execute, or Time Warp cannot guarantee forward progress and could enter
alivelock situation where it continues to process and roll back events, but GVT does
not advance.

A commonly used approach is to aways process the event in the processor with
the smallest time stamp next, by the rationale that this event is least likely to be
rolled back. This smallest time stampfirst (STF) policy has the advantages that it is
simple and that it tends to let the logical process farthest behind in simulation time
execute next. Further, if the Time Warp executive has no information on what
messages will arrive in the future, the process with the smallest time-stamp is
intuitively the process one would expect is least likely to be rolled back by messages
that will arrive in the future. The smallest time-stamped event in the entire simulator
will never be rolled back.

18 A cache memory is a high-speed memory that holds recently referenced instructions and data. Virtually
a1 general purpose microprocessors use some form of cache memory. |f the program repeatedly accesses
the 'same memory locations, the/memory locations being referenced are more likely to be in the cache,
improving performance.
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4.7 SUMMARY

This chapter has focused on the Time Warp mechanism, by far the best-known
optimistic synchronization protocol. Although many optimistic protocols have since
been developed, Time Warp is important because it has introduced many new,
fundamental concepts and mechanisms that are widely used in other protocols. For
example, anti-messages, state saving, event rollback, Global Virtual Time, and fossil
collection are utilized in most other optimistic synchronization mechanisms.

Further, use of rollback requires the introduction of new mechanisms to perform
other commonly used operations such as 1/O and dynamic memory allocation.
Specificaly, the new wrinkle that is added is that there must be the ability to roll
back these operations. Thus the techniques discussed here to allow these operations
to be rolled back are equally applicable to other synchronization mechanisms using
rollback.

The discussion in this chapter has been focused on what might be termed " pure"
Time Warp simulation executives. Aswill be discussed in the next chapter, a "pure"
Time Warp system has certain deficiencies that can lead to very poor performance
for some applications, and a variety of other optimistic synchronization protocols
have since been developed to solve these problems.

4.8 ADDITIONAL READINGS

The Time Warp algorithm is described in Jefferson (1985). Prior to Time Warp,
optimistic synchronization was proposed for database concurrency control (Kung
and Robinson 1981), and it has long been used in computer architecture, such asin
predicting the outcome of branch instructions (Hennessy and Patterson 1996).
Conversely, Time Warp has aso been proposed as a means to parallelize arbitrary
sequentia programs (Knight 1986; Cleary, Unger et d. 1988; Tinker and Katz 1988;
Fujimoto 1989; Tinker 1989).

Implementation of incremental state saving using operator overloading and
executable editing are described in Ronngren, Liljenstam et d. (1996), Chandrase-
karen and Hill (1996), and West and Panesar (1996), respectively. Measurements of
state-saving costs in a Time Wap system are reported in Cleary, Gomes et d.
9994). The optimal checkpointing interval for infrequent state saving is derived in
LI, Preiss et d. (1993), and performance evaluations using this technique are
reported in Bellenot (1992), Preiss, Macintyre et d. (1992); Palaniswamy and
Wilsey (1993),. Avril and Tropper (1995), and Fleischmann and Wilsey (1995).
Adaptive selection of the checkpointing interval is described in Ronngren and Ayani
(1994). A hybnd approach that combines copy and incremental State saving is
described in Franks, Gomes et d. (1997).

Perhaps the first GVT agorithm using message acknowledgments is described in
Samadi (1985) where the transient message and simultaneous reporting problems are
discussed. The GVT algorithm based on distributed snapshots is described in
Mgy A99RaRigridutes snapshots, on which the Mattern algorithm is based,
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are discussed in Chandy and Lamport (1985) and Ahuja (1990). Other GVT
algorithms are described in Bellenot (1990); Lin and Lazowska (1990); Concepcion
and Kely (1991), Tomlinson and Garg (1993), D'souza, Fan et d. (1994), Lin
(1994), Varghese, Chamberlain et d. (1994), Xiao, Cleary et d. (1995), and
Fujimoto and Hybinette (1998). The on-the-fty fossil collection technique is
described in Fujimoto and Hybinette (1998).

Error-handling mechanisms for Time Warp were implemented in some of the
earliest implementations. For example, JPLs Time Warp Operating System (Jeffer-
son, Beckman et d. 1987) included facilities to catch non-destructive errors using
signal handlers. More recently, the problem is discussed in Nicol and L-iuv (21997).

Extensions to Time Warp to redize shared-state variables and application-
invoked event retraction are described in Fujimoto (1989), Ghosh and Fujimoto
(1991), Mehl and Hammees (1993), Bruce (1995), and Lomow, Das et d. (1991).
Lazy cancellation is described in Gafni (1988), and performance comparisons with
aggressive cancellation are presented in Reiher, Fujimoto et d. (1990). Lazy re-
evaluation is described in West (1988). Use of hidden fields in the time stamp to
allow zero lookahead simulations are discussed in Reiher, Wieland et d. (1990) and
Mehl (1992).

Several attempts to develop analytic models to predict Time Warp performance
have been conducted. Early investigations were confined to analyzing two processors
(Lavenberg, Muntz et d. 1983; Mitra and Mitrani 1984; Felderman and Kleinrock
1991). Later work extended this to arbitrary numbers of processors (Gupta, Akyildiz
et d. 1991) and under limited memory constraints, as discussed in the next chapter
(Akyildiz, Chen et d. 1993). In Lin and Lazowska (1990) it is shown that if state
saving and rollbacks require zero time, Time Warp using aggressive cancellation will
achieve execution time equal to the critical path through the computation if incorrect
computation never rolls back correct computation, and Time Warp using lazy
cancellation can reduce execution time even further. Lipton and Mizell (1990)
show that Time Warp can outperform the Chandy/Misra null message algorithm by
up to a factor of N using N processors, but the null message algorithm can only
outperform Time Warp by a constant factor assuming constant rollback costs.
Performance bounds for Time Wap and conservative protocols are derived in
Nicol (1991). Finally, several empirical studies of Time Warp performance for a
variety of applications have been performed. Among the earliest are Fujimoto
(1989), Widand, Hawley et d. (1989), Morse (1990), and Preiss (1990). The
evaluation described in Fujimoto (1990) introduces a synthetic workload model
caled PHOLD that is sometimes used to benchmark different systems. Early
implementations of Time Warp are described in Jefferson, Beckman et d. (1987)
and Fujimoto (1989).

Hardware support.forTime Wap, has also been proposed. Support for state
saving is described in Fujimoto, Tsal et d. (1992), and support for reduction
networks to perform global” minimum computations is described in Reynolds,
Pancerella et d." (1993).

EEN CHAPTER 5

Advanced Optimistic Techniques

Ina"pure" Time Warp system there is no limit as to how far some logical processes
can advance ahead of others in simulation time. This is problematic because it can
lead to very inefficient use of computation and communication resources. Firgt, the
amount of memory required to execute the simulation can become unboundedly
large. To see this, consider a simulation with two logical processes, each processing
one event per unit of simulation time. Suppose that LPa requires 1 millisecond of
wallclock time to process each event but LPg requires 10 milliseconds. LPa will
advance ten events in the time LPg takes to advance only one event, so it requires
sufficient memory to hold ten message buffers; see Figure 51(a). After LP; has
processed a second event, LPa has processed ten more events, see Figure 5.1(b).
Only one event can be fossil collected from each LP. It is clear that the memory
requirements will grow without bound as the simulation progresses.

* memory buffer
holding an event

—>

simulation time

||O||||| Il

LPy ] " + memory buffer
I holding an event

LPA |..0 *.----.- c oo v . O fossil collected

| memory buffer

GVT ) o
simUlation time

(b)

Figure 5.1 Example illustrating unbounded memory requirements of a Time Warp simula-
tion. EW\SNAIha¥EEQ . @OIeconds; (b) snapshot after 20 milliseconds.
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A second source of inefficiency with such "overoptimistic" execution is that it
can lead to very long and/or frequent rollbacks. It is clear from Figure 5.1(b) that if
LPg now sends a message to LPA' along rollback will occur. Long rollbacks imply
much time was wasted performing computations that were later thrown away. Thisis
not so problematic if the processors have no other useful computations to perform
and would otherwise be idle, but otherwise, it is a serious deficiency. Further,
significant computation and communication resources may have to be expended to
perform the rollback itsef. As will be discussed later, a "rollback thrashing"
behavior could result where logical processes spend most of their time processing
rollbacks rather than performing useful simulation computations.

Building upon the Time Warp mechanism, this chapter discusses advanced topics
concerning optimistic synchronization. Specifically, memory management mechan-
isms and other optimistic synchronization protocols that have been proposed since
Time Warp first appeared are discussed. We conclude this chapter by examining the
design of an operational Time Warp system; we discuss various optimizations
included in this design to exploit shared-memory multiprocessors.

51 MEMORY UTILIZATION IN TIME WARP

Consider the execution of a Time Warp program where there is some fixed amount
of memory available on the parallel computer. One might ask, What happens if the
Time Warp system runs out of memory? In a sequential simulation one typically
aborts the program, and informs the user that additional memory is required to
complete the simulation run. Can a similar strategy be used for Time Warp
programs?

This approach is not entirely satisfactory for Time Warp programs. This is
because the amount of memory required during the parallel execution depends as
much on the dynamics of the execution as it does on properties of the simulation
model (for example, the number of state variables that are used), which is not under
direct control of the user in a "pure" Time Warp system. Specificaly, logical
processes that have advanced ahead of others in simulation time will require more
memory to hold past events, anti-messages, and the like, than processes that remain
close to GVT. The Time Warp system may have run out of memory because it
alowed some LPs to advance too far ahead of others. Simply purchasing additional
memory will not necessarily solve the problem because the Time Warp executive
may be even more overoptimistic in the next execution, causing the system to again
run out of memory. Further, the amount of memory required will vary from one run
to the next, meaning the same simulation program may execute to completion one
day-but.then.aboert-because .of lack-of memory resources the next time it is executed.

One might suggest blocking an LP when it runs out of memory rather than
aborting the program. Unfortunately, this is not a satisfactory solution either because
it can lead tordeadlock situations. For/example, in Figure 5.2, suppose that LP;, the
logical process executing at simulation time equal to GVT, has run out of memory in
attempting to schedule anew event. If the LP blocksto wait for more memory, it may
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Figure 52 Snapshot of a Time Warp computation indicating memory required to store
events.

wait forever because a GV T advance may be required to reclaim additional memory,
but GVT cannot advance because LP; is blocked.'

Solving this problem requires (1) a mechanism to either directly or indirectly
control memory utilization and (2) a policy to judiciously invoke this mechanism to
maximize performance without consuming too much memory. After introducing
some additional terminology, we next discuss memory management mechanisms
and policies, and a property known as storage optimality.

5.1.1 Preliminaries: State Vectors and Message Send Time Stamps

There are three types of memory used by the Time Warp system that are of concern
here: memory used to hold (1) positive messages (stored in the input queue), (2)
anti-messages (stored in the output queue), and (3) state vectors (stored in the state
queue). The first two contain time-stamped event messages. For the purposes of
memory management, it is convenient to view the third, state vectors, aso as
messages. Specifically, a state vector can be viewed as a message sent by an LP to
itself containing information concerning the state variables within the LP. The time
stamp of the state vector is that of the event that reads the state information, which is
the next event that is processed by the LP. Viewing state vectors in this way alows us
to discuss memory management in terms of only one type of memory object, time-
stamped messages.

Many memory management protocols assign two time stamps to each message.
In addition to the time stamp field discussed previously, a second one is defined that
indicates the virtual time of the logical process when it scheduled the event. This is
referred to as the send time stamp of the event. The time stamp field discussed up to

9 Actually memory can also become available through the message annihilation procedure. However,
there is no guarantee additional annihilations will occur, so this cannot be relied upon to break the

deadit@/¥iudmIBNAIaa.com
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Figure5.3 Example of message sendback mechanism. Event £20 is returned to sender, LPA,
causing events £10 and £20 to be rolled back.

now is referred to as the receive time stamp (or simply “"time stamp") because it
indicates the simulation time of the logical process when it receives the message.
The send time stamp of an event (for example, £20 in Fig. 5.3) is equal to the receive
time stamp of the event that scheduled this event (£10)' For example, Figure 5.3
shows three events, £10, £20, and £30' The send and receive time stamps of the
message containing £20 are 10 and 20, respectively.

5.1.2 Memory Management Mechanisms and Message Sendback

There are several mechanisms that can be used to control memory usage or to
reclaim memory once the system has run out:

1. Blocking. The Time Warp system can block certain logical processes to
prevent them from advancing forward and allocating additional memory.
Blocking prevents future allocations of memory but does not provide a
means for reclaiming memory currently being used by the Time Warp
system.

2. Pruning. The Time Warp system reclaims memory used by state vectors
created via copy state saving. The net effect after reclaiming these state vectors
is the same as if infrequent state saving had been used to avoid creating the
state vectors in the first place.

3. Rollback. A logical process can be rolled back to reclaim memory used for
state vectors in the rolled back events. In addition rollback will typically cause
anti-messages to be sent, and the subsequent message annihilations and
rollbacks will release additional memory resources.

4. Message sendback. This is a new mechanism to reclaim memory by returning
a message back to its original sender.

Blocking and rollback have been discussed previously, and pruning is based on
principles (infrequent state saving) that have also been discussed in Chapter 4. The
message sendback mechanism is described next.

Messagessendback is based.on the observation that a logical process can recover
memory used by-asmessagesinsitsiinput queue by removing the message from the
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queue, returning it to its sender, and reclaiming the memory.20 The logical process
receiving the returned message will usually roll back when it receives the returned
message to a simulation time prior to when the message was sent.?! For example,
Figure 5.3 illustrates an example of the message sendback mechanism. Here, LPg
returns the message holding event £20 to its original sender, LPA' Upon receiving the
returned message, L Pa rolls back events £10 and £30' Rolling back these events may
result in sending anti-messages, which may in turn cause secondary rollbacks and
reclaim additional memory. After the events have been rolled back LPa will then
reprocess £10 (and possibly £30), resending £20 to LPg. This cycle will repeat,
creating a type of "busy wait loop" until sufficient memory is available for the
computation to proceed forward.

Recall that GV T defines alower bound on the time stamp of any future rollback.
Therefore the message sendback mechanism cannot return a message whose send
time stamp is less than or equal to GVT,22 as this would result in a rollback beyond
GVT. Further the definition of GVT itself must be modified to accommodate
message sendback. This is because there may be a "sent-back" message in transit
(referred to as a backward transient message), being returned to its sender while the
GVT computation isin progress. |fthe GVT computation does not take into account
this message, arollback beyond GV T could occur through the following sequence of
actions:

1. A message M is sent back with send time stamp equal to T (T > GVT).

2. A new GVT computation is initiated and computes a new GV T value greater
than T, M remains in transit while the new GV T value is computed.

3. M isreceived by its original sender, causing a rollback to T. However, GVT
has advanced, so a rollback beyond GV T occurs.

To circumvent this problem, GVT is redefined as follows:

Definition: GVT with message sendback Global Virtual Time at wallclock time
T during the execution of a Time Warp simulation (GVTT) is defined as the
minimum among (l) the receive time stamp of al unprocessed and partialy
processed messages and anti-messages in the system and (2) the send time stamp
of al backward transient message at wallclock time T.

The algorithms described in the previous chapter can still be used to compute
GVT. One need only note messages that are being sent back, and modify the
minimum computation to use the send time stamp of any such transient message
rather than the receive time stamp.

20 | f the message that is sent back has already been processed, the LP must also roll back to prior to the
time stamp of the message. |f the "message” being sent back is actually a state vector (recall state vectors
are viewed as messages here), no rollback is required.

21 This will normally be the case. An LP may be at a point preceding the generation of the message if it
Was rolled back after sending the message.

221t op\RAhPIAI AF A&, CeprpRn occur if messages with send time equal to GVT are returned.
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5.1.3 Storage Optimality

It is clear that some minimal amount of memory is required to reasonably expect the
Time Warp simulation to complete, just as some minima amount of memory is
required to execute a sequential simulation. The amount of storage required to
execute a sequential simulation would seem to be a reasonable lower bound on the
amount of memory required for aparallel execution. It is clear, however, that even if
one were able to execute the simulation program using this little memory,
performance would be poor because there is little latitude for processes to advance
optimistically ahead of others. Thus one would like a memory management protocol
that is able to guarantee that it can complete the simulation if given only the memory
needed in a sequential execution but can utilize additional memory to exploit
optimistic execution when it is available. This approach gives rise to storage optimal
memory management protocols:

Definition: Storage Optimality A memory management protocol is said to be
storage optimal if it is able to guarantee that it can complete the execution of any
simulation program using no more than K times the memory required to complete a
sequential execution of the same program for some constant K.

Of course, K should be small for the algorithm to be practical. To see how a
memory management protocol can achieve storage optimality, consider a Time Warp
simulation where GVT is equal to T. Storage optimality can be achieved if the
memory management protocol can reclaim al memory buffers that would not exist
in a sequential execution of the simulation program that has advanced to simulation
time T. To achieve this, the memory management system must be able to recognize
those events that would exist in the sequential simulation at time T, and those that
would not. Fortunately this is straightforward. The key observation is that the events
that reside in the pending event list in a sequential simulation at time T are those that
have atime stamp greater than or equal to T, and were scheduled prior to simulation
time T.

To illustrate this concept, consider the snapshot of the execution of a Time Warp
program shown in Figure 5.4. There are three types of events, differentiated by the
position of the send and receive time stamps relative to GVT (equal to T):

1 Past events. Send time stamp < receive time stamp < GVT; these events can
be fossil collected.
2. Present events. send time stamp < GVT < receive time stamp; these events

match those that would exist in the pending event set in a sequential execution

a time T.2

3. Future events. GVT < send time stamp < receive time stamp; these events '
have not yet been created in the sequential simulator at time T, and they can be

23 Actually this definition‘includes all-events scheduled at time T, not all of which may be in the pending

event list at the same time during the sequential simulation.
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Figure 54 Snapshot of aTime Warp execution illugtrating the different types of events with
respect to memory management. Arcs in this figure indicate which events scheduled which
other events.

reclaimed by the memory management protocol via message sendback or
rollback.

The memory management protocol must locate and, if necessary, reclaim storage
used by future events. The protocol will achieve the storage optimality property if it
is able to reclaim al of the storage (or to within a constant factor) used by the future
events.

The focus of the discussion here is on storage optimal memory management
protocols for optimistic parallel simulations. Note that existing conservative simula-
tion protocols are not storage optimal, though it is widely believed that memory
usage is not as severe a problem in conservative simulation systems as it is in
optimistic systems.

It may be mentioned that storage optimality is much more difficult to achieve on
distributed-memory architectures than on shared-memory platforms. To see this,
consider the simulation application depicted in Figure 5.5 consisting of five logical
processes organized as a ring. Assume that each logical process executes on a
different processor. This application initialy contains a single message. When the
message is processed, it creates one new message that it sends to the next process in
the ring, with a certain time stamp increment. Because there is only one event in the
pending event list a any time, a sequential simulator will only need two memory
bUffers. one to hold the current event being processed, and one to hold the new event
that is scheduled by this event. A Time Warp execution of this program on a shared-
memory multiprocessor using a storage optimal memory management protocol will
dso only require two buffers if they are stored in shared memory and can be

aloggiraonaay Bliesesehriyrerationaly the Time Warp program will process an
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simulation time

Figure 55 Application demongtrating the difficulty of achieving storage optimality in
distributed memory architectures.

event E, a the LP where it currently resides, then schedule a new event E, for the
next LP in the ring. Once E, has been processed, GVT can advance, and the storage
used to hold E, can be reclaimed. This buffer can now be used to hold the new event
schedule by E,, so only two buffers are required.

When the same Time Warp program is executed on a distributed-memory
platform, however, memory buffers cannot be shared among processors. Thus
each processor must hold two memory buffers to implement this application, or a
total of2N buffers are needed where N is the number of processors in the system.24
Thus the execution is not storage optimal, since it requires N times the number of
buffers required in a sequential execution. In principal, this problem could be
circumvented if logical processes are alowed to migrate between processors;
however, process migration is a relatively time-consuming operation. Similarly
one could implement shared-memory abstractions on top of a distributed memory
architecture; however, the high cost of access to memory that physically resides on
another machine currently makes this approach not very attractive from a perfor-
mance standpoint.

Specific memory management protocols are described next. Four protocols are
considered, each using a different mechanism to control memory utilization. The
Cancelback protocol uses the message sendback mechanism. Artificial Rollback uses
rollback. Pruneback uses state pruning, and Memory-Based Flow Control uses
blocking. Among these, Cancelback and Artificia Rollback are storage optimal;
they are designed for shared-memory machines. Pruneback and memory-based flow
control are not storage optimal but are designed for distributed-memory machines.

240ne could argue that in principal, each processor could release its memory buffers once it has
completed processing the event, resulting in only two buffers being allocated in the entire system at any
instant during the execution. This is not'really a storage optimal execution, however, because the parallel
computer must physically have memory for 2N buffers, even if only two are being used at one time.
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Other optimistic synchronization protocols are described later in this chapter that
provide mechanisms to limit the amount of "optimism" in the Time Warp execution.
Although the principal motivation behind these protocols is reducing the amount of
rolled-back computation, these protocols indirectly limit memory consumption.

5.1.4 Cancelback

Cancelback uses a global pool of memory to hold buffers that are not in use. All
memory is alocated from this pool, and memory that has been released, such as via
fossl collection or annihilation, is returned to this pool. After each memory
alocation, the processor checks if additional memory (or some minimal amount)
is available. If it is not, the fossil collection procedure is called to reclaim memory. If
fossl collection fails to allocate additional memory, the processor uses the message
sendback protocol to reclaim memory.

Any message with a send time stamp greater than GVT is eligible to be sent back.
Because message sendback may roll back the sender LP to the send time stamp of
the returned message, the message containing the largest send time stamp in the
simulation is a good candidate for being sent back. This will tend to roll back LPs
that have advanced ahead of the others. If no buffers with send time stamp greater
than GVT are found, then there are no future events in the system (indicating all
events in the Time Warp execution would aso be required in a sequential execution),
50 the program is aborted due to lack of memory.

An example illustrating the Cancelback protocol is depicted in Figure 5.6. Figure
5.6(a) shows a snapshot of the execution when Cancelback is called. The memory
buffer containing event Eg contains the largest send time stamp, so Cancelback
selects this event for storage reclamation. As depicted in Figure 5.6(b), this event is
sent back to LPA' causing event Eg (the event that scheduled ) to be rolled back.

Each Cancelback call is arelatively time-consuming operation because it includes
a GVT computation, fossil collection, and a procedure for locating the event
containing the largest time stamp as well as the sendback mechanism itsdlf. This
cost can be reduced by performing message sendback on several messages in each
Cancelback call. Operationally this can be done by applying the message sendback
mechanism to severd events, until at least some minimal amount of memory has
been reclaimed. This minimal amount of memory that must be reclaimed is called
the salvage parameter.

5.1.5 Artificial Rollback

The artificial rollback protocol is somewhat similar to Cancelback, except it uses a
rollback mechanism to reclaim memory rather than sendback. Like Cancelback,
artificial rollback also uses a salvage parameter that indicates the minimum amount
of storage that should be reclaimed when this mechanism is invoked. If an LP runs
out of memory and nothing can be reclaimed via fossil collection, the LP with the
largesnvsivoohaliioa tende clmak value is rolled back to the simulation time of the LP
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Figure 56 Cancdback example. (a) Snapshot of the smulaion before Cancelback cdl; (b)
sngpshot after Cancelback operation; event Eg is sent back, causing event Es to be rolled
back.

with the second largest clock value. | f insufficient memory is reclaimed, then the two
LPs mentioned above are both rolled back to the simulation time of the LP with the
third largest clock. This procedure continues until enough memory has been
reclaimed, or until no additional buffers are €ligible for recovery via rollback.

Figure 5.7 illustrates an invocation of the Artificial Rollback protocol (for the
same situation as in Fig. 5.6). As shown in Figure 5.7(a), LPa isthe furthest ahead in
the simulation, <o it is rolled back to the current simulation time of LPc' the second
most advanced LP. This results in the rollback of events Egr; and Erz- Rolling back
these events results in the cancellation, and storage reclamation of events Eci' Ec2:
and EC3'

Like Cancelback, Artificiad Rollback is also storage optimal when implemented
on a shared-memory multiprocessor with a globa buffer pool. It is somewhat
simpler to implement than Cancelback because there are no reverse transit messages.
Thus there is no possibility of race conditions such as a positive message in reverse
transit™" passing by ananti=message ini forward transit and missing each other.

As discussed earlier, the use of global, shared memory alows Cancelback and
Artificial Rollback 'to have the storage optimality property. Variations on these
protocols can. be defined that do not use a global memory pool (for example, each
processor or‘even each LP can have a separate memory pool) but at the cost oflosing
the storage optimality property.
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Figure 57 Artificid Rollback example. (a) Snapshot of system before invoking Artificia
Rollback; (b) sngpshot after the protocol rolls back events Er, and Eg,-

5.1.6 Pruneback

The Pruneback protocol does not use rollbacks to reclaim memory. Instead, it uses
the pruning mechanism described earlier where uncommitted state vectors are
reclaimed. Pruneback was designed for distributed-memory architectures where
there is a pool of free memory in each processor that can be used by LPs mapped to
that processor. When a processor exhausts its supply of memory, and no additional
memory can be obtained via fossil collection, the memory used for uncommitted
state vectors created via the copy state saving mechanism is reclaimed.

The specific state vectors that are reclaimed is arbitrary, with the constraint that at
least one copy of the state vector older than GV T must remain (as well as the events
in the input queue with a time stamp larger than the state vector, even if the event
time stamp is less than GVT) in case a rollback to GVT later occurs. The current
state of the logical process (which mayor may not reside in the state queue,
depending on the implementation) aso cannot be reclaimed by the pruning
mechanism. From a correctness standpoint, any state vector can be reclaimed. The
choice of which state vectors to reclaim will affect performance, however. A
straightforward approach might be to reclaim every kth state vector, mimicking
the strategy used in infrequent state saving. Another approach might be to try to
reclaim states with small time stamp firs, operating under the assumption that
rollbacks to the “far past" are less likely than rollbacks to the "near past.”

The pruning mechanism has the advantage that unlike rollback, no user
coMpitdliona Aaraas&DiMit have to be later repeated. Also, unlike Cancelback
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and Artificia Rollback, memory reclamation is performed local to the processor
running out of memory, avoiding the need for expensive interprocessor commu-
nications and synchronizations. The cost associated with pruning state vectors is the
same as with infrequent state saving. If arollback occurs, one may have to roll back
further than is really necessary to go back to the last saved state vector, and
recompute forward (referred to as coast forward in Chapter 4) to obtain the desired
state. The other disadvantage of Pruneback relative to Cancelback and Artificial
Rollback is that Pruneback can only reclaim state vectors; it does not attempt to
reclaim storage used by events or anti-messages.

5.1.7 Memory-Based Flow Control

The memory management protocols discussed thus far were dl based on a recovery
mechanism that takes some action to reclaim memory if memory resources become
exhausted. The find protocol described here uses a blocking mechanism that
attempts to prevent processors from running out of memory. Like the Pruneback
protocol, this protocol is well suited for distributed-memory architectures, and it is
not storage optimal. The basic idea behind this protocol is that the Time Warp
system predicts the amount of memory the program will require until the next fossil
collection and then only provides this amount of memory to the program. This
estimate is computed by the Time Warp system, transparent to the application, by
monitoring the program's execution, and it is updated throughout the execution o
that the system can adapt to changes in program behavior. If a logical process
requests memory and none is available, it blocks until additional memory is freed via
rollbacks, message cancellations, or fossil collection.

The projected amount of memory that will be required is computed by (1)
estimating the instantaneous amount of memory required by a sequential execution
of the program, (2) inflating this amount to determine the amount that will be
required until the next fossil collection, and (3) inflating the amount computed in (2)
further to allow for optimistic event processing. To estimate (I), the allocation of
message buffers during a sequential execution is modeled as a queueing network
(see Fig. 5.8). Each buffer is viewed as a "job" that arrives a a server when it is
allocated from the free pool. The buffer remains in service until the storage it uses is
reclaimed, a which time it departs from the server and is returned to the free poal.
The average number of jobs in the server (buffers "in use") a one time indicates the
amount of memory required in a sequential execution.

In general, the average number of jobs in a server can be computed if one knows
the rate a which buffers arrive, and the average amount of time each job remains in
the server-Here, these quantities-are.computed per unit simulation time. Specificaly,
let

1. / denote the average rete that buffers are alocated (jobs arrive at the server).
Operationally A can be computed as Al T, where A is the number of message
sends occurring over a period of T units of simulation time.
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Figure 5.8 Model for estimating memory requirements for sequential simulation.

2. |l 4 denote the amount of simulation time that the buffer remains in use; this is
simply the average difference between the receive and send times of each
event, and it can be computed as LIA, where L is the sum of the differences in
send and receive time, computed over A message sends.

Little's Law is awell-known result from queueing theory. It says that the average
number of jobs that will be in service a one time is A/u. Intuitively A jobs arrive per
unit simulation time, so over |l u units of simulation time, 4/u new jobs arrive,
displacing the 4/ jobs in the server at the start of the observation period. Thus the
average number of buffers required in the sequential execution is LIT. One
additional modification is required to estimate the amount of sequential memory
during the execution of a Time Warp simulation: 1f an event is canceled by sending
an anti-message, this is erased from the measured statistics by assigning the anti-
message a hegative time stamp increment and negative count.

To provide enough memory between successive fossil collections, this memory
size is increased by AT’ buffers, where T is the expected increment in GVT at the
next fossil collection (measured from previous fossl collections). The resulting
number of buffers, LIT + A7” is multiplied by a scaling factor m (greater than 1.0)
that is constantly varied during the execution; m is increased (decreased) from one
fossl collection to the next so long as it increases performance.

5.1.8 Trading Off Performance and Memory

The memory management protocols discussed thus far provide a means to execute
Time Warp programs with limited amounts of memory. It is clear that if only a
minima amount of memory is provided, performance will be poor. This section
addresses the question of how performance varies as the amount of memory
provided to the Time Warp program varies.

Consider the Cancelback and Artificial Rollback protocols. Intuitively, as the
memory is increased beyond that required for sequential execution, one would
expect performance to increase. As the amount of memory is increased further,
perfanvvanag enassiaalty decrease, particularly for poorly balanced workloads (for
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example, the program shown in Fig. 5.1) where some processors advance more
rapidly through simulation time than others. This is because limiting the amount of
memory provides aflow control mechanism that avoids overly optimistic execution,
which can lead to long rollbacks and poor performance.

Figure 5.9 shows the performance of Time Warp using Cancelback as the amount
of memory provided to the execution is varied. Similar results could be expected
using the Artificial Rollback protocol. These data use a synthetic workload
consisting of a fixed number of jobs moving among the different logical processes.
The sequential execution requires as many buffers as there are jobs, since each job
always has exactly one event in the pending event list. Performance data are shown
for the cases of four, eight, and twelve processors as the number of buffers beyond
sequential execution is varied. Each processor contains one LP. The number of
buffers needed in the sequential execution are 128, 256, and 384, or 32 buffers per
logical process. Two curves are plotted for agiven number of processors. One shows
performance predictions computed from an analytic model for Cancelback. The
second shows experiments performed on the Georgia Tech Time Wap (GTW)
simulation executive, with Cancelback, described later in this chapter. These
experiments were performed on a Kendall Square KSR-1 multiprocessor. In this
implementation each memory buffer includes information concerning a single event,
a state vector holding copy state saved variables (state saving is performed prior to
the processing of each event), and information concerning the messages that were
sent while processing the event.

It is seen that performance rises rapidly as the number of memory buffers is
increased beyond the minimum. A well-defined knee is formed, beyond which
performance improves only dightly or not a al. This program does not experience
poor performance for very large amounts of memory because of the balanced nature
of the synthetic workload. Overall, for these experiments, if the Time Warp program
provides from 25% to 75% additional buffers beyond that required for sequential
execution, performance is about the same as if unlimited memory were provided.
The reader should be cautioned, however, that these results are heavily dependent on
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Figure 5.9 Performance of Time Warp using Cancelback as the amount of memory is

varied.

5.2 PERFORMANCE HAZARDS IN TIME WARP 151

details of the application program, so better or worse performance could occur for
other applications.

5.2 PERFORMANCE HAZARDS IN TIME WARP

The previous section focused on mechanisms and policies to ensure that Time Warp
makes effective usage of memory resources. Let us now tum our attention to
ensuring effective utilization of the Cpu. As was pointed out earlier in this chapter,
Time Warp may produce inefficient executions due to long rollbacks if no
constraints are placed on how far some processes can advance ahead of others.
Severe performance degradation can result in other situations as well.

This section focuses on specific scenarios that can lead to very poor performance
in Time Warp executions, and countermeasures that should be taken in implement-
ing Time Warp to minimize the probability that they occur. The next section
discusses a variety of other optimistic synchronization protocols that have been
developed to circumvent these potential problems.

521 Chasing Down Incorrect Computations

At any ingtant in the execution of Time Warp there will usualy be incorrect
computations that will be later rolled back and intermixed with correct ones which
will eventually be committed. It is important to realize that while the rollback/anti-
message mechanism is canceling incorrect computations, this incorrect computation
is spreading throughout the simulation system. It is essentia that the Time Warp
system be able to cancel erroneous computations more rapidly than they propagate
throughout the system. Stated another way, if the disease spreads faster than the cure,
the patient died

A scenario illustrating this phenomenon is shown in Figure 5.10. This scenario
consists of three logical processes, LPA' LPg, and LPc, each mapped to a different
processor. Initially an incorrect computation in LPc generated an erroneous event in
LPg, which in tum generated an erroneous event in LP,; see Figure 5.10(a). The
event in LP¢ is about to be canceled by an anti-message. Figure 5.10(b) shows the
dstate of the system after the cancellation in LPc has occurred, which has aso
generated a new anti-message which is sent to LP;. While this is going on, LPa
schedules a new, erroneous event for LPc. This set of actions (cancellation and send
anti-message, and propagate the wrong computation to another processor) is
repeated again and again, yielding the snapshots shown in Figure 5.10(e) and (d).
As can be seen, the incorrect computation remains a step ahead of the cancellation
operations and is never completely canceled, much like a dog chasing its own tail.

Time Warp is more likely to encounter situations such as this when there is little
computation required to process incorrect events, and the amount of parallelism in
the application is less than the number of processors. Having little computation per
evert\WisktdaiReER@a@MNincorrect computations. 1f the degree of parallelism is
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Figure 510 Scenario illudrating the "dog chasing its tail" effect in Time Warp. (a) Initid
sngpshot of system; (b) snapshot after message cancellation and propagation of incorrect
computation to one more processor; (c) and (d) successive sngpshiots showing the cancellation
"wave' faling to catch up to the spread of the incorrect computation.

low, there will be processors available to spread the erroneous computation as soon
as they arrive.

This scenario suggests that anti-messages must be able to rapidly "outrun” the
incorrect computations that they are intended to cancel. Canceling a message and
sending an anti-message must consume less time than processing an event and
scheduling a new event in order to avoid the scenario depicted in Figure 5.10.
Further, anti-messages should be given higher priority than positive messages. An
alternative approach is to aways give highest priority to the computation associated
with the smallest time stamp, whether processing positive messages or performing
annihilation and rollback.

5.2.2 Rollback Echoes

Ifthe time to perform arollback is high, very poor performance may result. Rollback
requires the following computations to be performed:

1. Anti-messages must be sent for al of the events that are to be canceled.
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2. The state of the logical process must be restored; this requires copying a state
vector from the copy state save queue, and undoing all modifications to state
variables stored in the incremental state saving log.

3. Pointers within the input queue must be updated; details depend on the
specific data structure used to implement this queue.

Step 1 and the incremental state restoration portion of step 2 suggest that the
rollback overhead is proportional to the number of events being rolled back. Suppose
that rolling back a computation T units of simulated time takes twice as long as
forward progress by the same amount. Consider the case of two logical processes
LPa and LPg that are mapped to different processors, and LPa is 10 units of
simulation time ahead of LPg; see Figure 5.11(a). LPg sends a message to LPa:
causing the latter to roll back 10 units of simulation time. While LPa is rolling back
10 units of time, LPg advances forward 20 units oftime according to our assumption
that rollback is more time-consuming than forward progress; see Figure 5.11(b).
Later, LPa sends a message back to LPg, causing LPg to roll back 20 units in
simulation time. While LPg is rolling back, LPa advances forward 40 units of time,
leading to a rollback of this length; see Figure 5.11(c). One can see that this is an
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Figure 511 Echo example. (a) LPs sends amessage to LPa, causing LPa to roll back. (b)
While LPa rdlls back, LP; advances forward. (c) Sequence repeats, with the length of
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unstable situation where the length of each rollback (and thus the time spent rolling
back logical processes) is doubling with each round in this scenario. The net rate of
progress in simulation time (as measured by GVT advances) decreases as the
simulation proceeds! This scenario is referred to as an "echo" in the paralel
simulation literature,

Fortunately, under normal circumstances, rolling back T units of ssimulation time
should not be more time-consuming than forward progress by the same amount.
Sending a positive message during forward execution should be |ess time-consuming
than sending an anti-message during rollback. The reason is that sending a positive
message requires allocation of amemory buffer, specifying its contents, and creating
the anti-message copy, which are steps not required during rollback. Logging state
changes during incremental state saving will similarly be about as time-consuming,
if not less, than restoring state after a rollback. Forward execution aso entails other
computations, such as selecting the event to be processed next, copy state saving for
each event, processing incoming positive and negative messages, and the simulation
computation itself.

On the other hand, infrequent state saving does increase the cost of rollback. This
is because when infrequent state saving is used, one may have to roll back further
than is strictly necessary to go back to the last saved state of the process, and then
compute forward (coast forward) to regenerate the desired state. The coast-forward
step must be included as part of the rollback cost because forward computation
beyond the simulation time of the causality error cannot proceed until coast forward
is completed. Thus a disadvantage of the infrequent state-saving technique is that it
pushes the Time Warp program closer to unstable scenarios such as that described in
Figure 5.1. In general, techniques that increase the cost of rollback must be carefully
weighed against the benefit that will be gained. Moreover this discussion highlights
the fact that implementation overheads can playa key factor in determining the
performance of a parallel simulation system based on the Time Warp protocol.

53 OTHER OPTIMISTIC SYNCHRONIZATION ALGORITHMS

A number of other optimistic synchronization algorithms have been proposed since
Time Warp first appeared. They were motivated to a large extent by the potential
performance hazards discussed throughout this chapter. Thus a common theme
among these protocols is a policy to avoid excessive rollbacks and logica processes
executing too far ahead of others in simulation time. Most agorithms provide
parametersitor* tune'sthesalgorithmrinsorder to control the behavior of the algorithm
and to maximize performance.

Like the ‘discussion of memory management mechanisms, each optimistic
synchronization protocol can be characterized by the mechanism used to control
the ‘execution, and the policy or the rules governing when the mechanism(s) is
applied. Control mechanisms that have been widely explored include the following:
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1. Blocking. The progress of one or more logical processes is blocked in order to
avoid inappropriate optimistic execution.

2. Rollback. Inappropriate optimistic execution is controlled by selectively roll-
ing back one or more logical processes.

Three of the four memory management protocols discussed earlier in this chapter
are examples of synchronization protocols that can be used to control optimistic
execution. The memory-based flow control mechanism uses a blocking mechanism:
memory utilization is used as the metric to control blocking. Cancelback and
Artificial Rollback use rollback. The fourth protocol, Pruneback, does not provide a
mechanism for directly controlling optimistic execution.

A second, orthogonal axis by which protocols can be classified is according to
whether the control policy is static or adaptive. Static control mechanisms set control
parameters (for example, the amount of memory for the memory-based control
mechanisms) at the beginning of the execution and do not vary these parameters
during the course of the execution. Adaptive protocols monitor the execution of the
program and attempt to adaptively change the control parameters during the
execution. The memory-based flow control mechanism described earlier is an
example of an adaptive control mechanism.

531 Moving Time Window

A simple approach to control optimistic execution is to set a bound on how far one
logical process can advance ahead of others in ssimulation time. LPs that reach this
bound are forced to block until the LPs lagging behind in simulation time have
advanced. Operationally this can be accomplished by defining a window of
simulation time extending from GVT to GVT + W, where W is the size of the
time window. Logical processes are not allowed to advance beyond GVT + W. This
time window advances forward whenever GVT advances.

The above idea is the essence of the Moving Time Window (MTW) parallel
simulation protocol. The original MTW protocol called for a static window size,
specified by the modeler, that does not change during the execution of the
simulation. It is clear that adaptive versions of this agorithm are also possible
where the runtime system automatically monitors the execution and adjusts the
window size to maximize performance.

The central advantage of time windows is that they provide a simple, easy to
implement mechanism to avoid "runaway LPs" from advancing far ahead of others.
The central disadvantage of this approach is the cost of maintaining the window,
which requires either frequent GVT computations or an efficient mechanism for
estimating GVT. Another disadvantage of this approach is that the window does not
distinguish correct computations from incorrect ones; that is, incorrect computations
within the window would till be allowed to execute, while correct ones beyond the
window are not allowed to execute. Further it is not immediately clear how the size
of thanindoarRBmae ey this is clearly dependent on the application, since the
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number of simulation events per unit of simulation time must be considered.
Empirical data concerning this approach are mixed, with some studies indicating
significant benefit but others reporting modest gain.

A variation on the time window approach is to define the window in terms of the
number of processed, uncommitted events (NPUE) that may reside in a logical
process rather than on simulation time. In the Breathing Time Warp protocol, the
user must specify this NPUE parameter. An LP is blocked when the number of
processed events in that LP with time stamp larger than GVT reaches NPUE. The LP
becomes unblocked when GVT is advanced and some of these events become
committed.

5.3.2 Lookahead-Based Blocking

The window-based approaches define blocking mechanisms that are not related to
detailed dependencies between events in the simulation program. Another approach
is to base blocking decisions on information obtained by applying a conservative
synchronization protocol. This inevitably implies utilizing lookahead information to
determine which events are safe to process. One can envision sarting with a
conservative synchronization protocol to determine which events are safe to process,
and adding to it optimistic synchronization mechanisms such as rollback and anti-
messages to allow processing of events that cannot be guaranteed to be safe to be
processed. This leads to hybrid conservative/optimistic synchronization agorithms.

One such agorithm is thefiltered rollbacks approach. This is an extension to the
conservative Bounded Lag synchronization algorithm discussed in Section 3.5.
Lookahead is used to determine the minimum distance (in simulation time between
LPs). In the original Bounded Lag agorithm, the user provides alower bound to the
minimum amount of simulated time that must elapse for an event in one process to
affect another. Such minimum "distances" are derived based on application specific
information such as the minimum time stamp increment encountered by an event as
it "passes through" alogical process. The minimum distance between processes is
used as abasis for deciding which events are safe to process. In filtered rollbacks the
simulator is alowed to violate this lower bound, possibly leading to violation of the
local causality constraint. Such errors are corrected using a Time Warp like rollback
mechanism. By adjusting the distance values, one can vary the optimism of the
algorithm between the conservative bounded lag scheme and the optimistic moving
time window approach.

5.3.3 Local Rollback

One can. distinguish. between two_different types of rollback in Time Warp: primary
rollbacks where a logical process received a straggler message in its past, and
secondary rollbacks caused by recejving an anti-message that cancels an event that
hes alreadybeen processed: Simulation protocols that alow primary rollbacks are
sometimes call ed aggressive protocols, while those that send messages that may later
be canceled (thus creating the possibility of secondary rollbacks) are said to alow
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risk. Time Warp is aggressive and alows risk. It is the combination of these two
different types of rollback that causes the cascaded rollback effect where rollbacks
can be propagated among many processors. The "dog chasing its tail" effect
described earlier is one possible consequence of the cascaded rollback effect.

Cascaded rollbacks can be eliminated without completely discarding the benefits
of optimistic synchronization by alowing primary rollbacks but not secondary
rollbacks. This approach gives rise to aggressive, no-risk (ANR) protocols. It is
accomplished by not alowing messages to be sent until it can be guaranteed that
they will not be rolled back. Operationally this means that when a logical process
sends a message, the processor does not immediately send it but rather stores the
message in a buffer. The message is not sent until GVT advances beyond the send
time stamp of the message, thereby guaranteeing that the message will not be later
canceled. Because rollbacks do not propagate to other processors, this mechanism is
sometimes referred to as alocal rollback mechanism. The local rollback mechanism
avoids the need for anti-messages, but state-saving mechanisms are till required to
allow recovery from rollbacks due to straggler messages.

5.3.4 Breathing Time Buckets

The Breathing Time Buckets (BTB) algorithm uses a combination of synchronous
event processing with barriers (like that in Filtered Rollbacks, and its predecessor,
Bounded Lag), time windows, and loca rollback. The central idea in BTB is to
compute a quantity called the event horizon that determines the size of the time
window.

BTB can be viewed as an extension of the sequential event list mechanism that
allows optimistic parallel processing; in this sensg, it is an optimistic version of the
synchronous conservative protocol discussed in Section 3.5.5. The key idea is
determining the minimum time stamp among events that will be produced in the
future. In the conservative protocol, lookahead is used to determine the minimum
time stamp of future events. In BTB one optimistically processes events to compute
this quantity.

Consider a sequential ssimulation that has advanced to simulation time T. There
will be some number of events in the pending event list, al with time stamp of at
least T. Let H(r) denote the smallest time stamp of any new event that will be
generated after simulation time T. H(T) is referred to as the event horizon. |f the
parallel smulation has advanced to time T (i.e., GVT is T), dl events in the pending
event list with time stamp less than H(T) can be processed without the possibility of
being rolled back.

The BTB algorithm operates in cycles, where in each cycle, the parallel
simulation will perform as follows (assume that GVT is a simulation time T at
the beginning ofthe cycle):

1. Optimistically process events in each processor in time stamp order. During
wwibisrhapedngd . b hack is used so that new messages generated as the result
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of processing an event are not sent but rather kept local in the sender in a
message buffer. Also, as each processor optimistically processes events, it
keeps track of the minimum receive time stamp among new events which were
scheduled during this cycle. This quantity Hi(T) is the loca minimum in
processor i; it represents the event horizon in processor i based only on local
information. Each processor will only process events so long as their time
stamp is less than the current value of H;(T) (recall that events are processed in
time stamp order).

2. Compute the global event horizon. H(T) is computed as the minimum of
H/(T) over dl of the processors.

3. Send messages. All messages with a send time stamp less than H(T) can now
be sent. It can be guaranteed that these messages will not later be rolled back.

4. Advance simulation time. GVT is advanced to H(T).

The above steps are repeated until the simulation terminates.

An example illustrating the execution of BTB is shown in Figure 5.12. Here,
there are three logical processes LPa' LPg, and LP¢, and each is mapped to a
different processor. Figure 5.12(a) shows a snapshot of the system at simulation time
T with the boxes representing unprocessed events within each LP that were
generated in previous cycles. Each LP processes its events in time stamp order so
long as the time stamp of the event is less than the minimum time stamp of any new
event produced in this cycle. For example, as shown in Figure 5.12(b), LPa
processes events Al, A2, and A3, and A2 schedules a new event Y. It does not
process A4 because A4 has atime stamp larger than Y. Similarly LPg processes its
two events Bl and B2, and then it stops because there are no more events for it to
process. LPc processes Cl but does not process C2 because Cl produced a new
event X with a smaller time stamp than C2. The local event horizon for LPa is
computed as Ty, the time stamp of event Y, while that of LPc is Tx. The local event
horizon of LP; is co because it did not schedule any new events.

After the optimistic event-processing phase is complete, the global event horizon
is computed as the minimum of the three local event horizons, or Ty ; see Figure
5.12(b). Like the GVT algorithms discussed in Chapter 4, some care must be taken
here to ensure that there are no transient messages in the system. Simulation time
(i.e, GVT) is advanced to H(T), and the messages generated by the optimistic
processing are sent to their destination processor. The events Al, A2, BI, B2, and
Cl are now committed, and memory used by these events (log information) can now
be reclaimed viathe fossil collection mechanism. In this example, A3 was processed
but not committed; one could roll back this event and reprocess it in the next cycle,
or preserve this computation. In this example, the message X is sent to LPa with
timepstampylessthan;thatyofyA3msarA3ymust be rolled back and reprocessed in the
next cycle. Had A3 scheduled a new event, the message for this new event would not
have been sent to the destination processor because A3 had not been committed, so
the erroneous event can be canceled localy. The final state of the simulation at the
end ofithis cycle is'shown in Figure 5.12(c).
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Figure 512 Example illugtrating the execution of the Breathing Time Buckets dgorithm.
(a) Initid set of unprocessed event; (b) result of Smulation phase and computation of the event
horizon; (c) messages generated during the smulaion phase are sent, and Smuldtion time is
advanced.

5.3.5 Wolf Calls

The "dog chasing its tail" effect discussed earlier can be avoided by blocking
processors when arollback is detected. In the Wolf Calls protocol, when a processor
detects that it has received a straggler message, it broadcasts a specia control
message that causes the processors to stop advancing until the error has been erased
(via anti-messages and rollbacks). The special control messages warning of
“pOSSible danger” are referred to as "wolf calls," in reference to the well-known
fable

Broadcasting has the disadvantage that it may unnecessarily block some LPs.
This can be dleviated if the LP detecting the error can determine the set of
processors to which the error may have spread. In this case the control messages
need only be sent to thi'S set of processors. This requires an upper bound on the speed
in wallc10ck time that an erroneous computation may spread, as well as an upper

baHREP e ERagY. 85 Rs control messages. Such bounds may be difficult to define



160 ADVANCED OPTIMISTIC TECHNIQUES

on multiprocessor systems, however, and even with this optimization, the set of
processors that might be affected by an error may be significantly larger than the set
that actualy is affected by the error.

5.3.6 Probabilistic Rollbacks

Besides rollbacks necessary to ensure correctness of the simulation, rollbacks may
be added to prevent overly optimistic execution. In the probabilistic rollback
approach each LP periodically draws a binary random number with probability p
of coming up heads (and probability | - p of coming up tails). If the result is heads,
the LP is rolled back to GVT. If it is tails, no such operation is performed. The
frequency and probability p are user-defined tuning parameters.

5.3.7 Space-Time Simulation

Space-time simulation is an approach based on relaxation techniques similar to those
used in continuous simulation problems. The goa of a discrete event simulation
program is to compute the values of state variables across simulated time. For
example, the smulation of a server in a queueing network simulation can be viewed
as determining the number of jobs that exist in the server a every point in simulated
time.

As was described in Chapter 2, the simulation can be viewed as a two-
dimensional space-time graph where one dimension enumerates the state variables
used in the simulation, and the second dimension is simulated time. The simulator
must fill in the space-time graph, that is, determine the value of the simulator's state
variables over simulated time in order to characterize the behavior of the physical
system. In space-time simulation this graph is partitioned into regions, with one
process assigned to each region. This process is responsible for filling in the portion
of the space-time graph that is assigned to it. In order to accomplish this task, the
process must be aware of boundary conditions for its region, and update them in
accordance with activities in its own region. Changes to boundary conditions are
passed among processes in the form of messages. Thus each process repeatedly
computes its portion of the space-time graph, transmits changes in the boundary
conditions to processes responsible for neighboring regions, and then waits for new
messages indicating further changes to the boundary conditions. The computation
proceeds until no more changes occur, that is, until the computation converges to a
fixed point. Time Warp can be viewed as a specia case of space-time simulation
where the space-time region is defined as rectangles, one per Lp, that span al of
simulation time for the set of state variables mapped to that LP.

5.3.8 Summary

Building on'the basic mechanisms defined for Time Warp, numerous synchroniza-
tion protocol s’have been definedito! circumvent the pitfalls that may occur with over-
optimistic execution. Most provide contral parameters that must be set by the user to
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tune performance. Some provide mechanisms to have the Time Warp system
automatically set these parameters and, in some cases, change these parameters
during execution to optimize performance. Space does not permit elaboration of al
of the protocols that have been proposed. Pointers to additional information on this
subject are provided at the end of this chapter.

At present, conventional wisdom within the parallel simulation community is
that:

1 "Pure" Time Warp systems with no flow control mechanisms are not well
suited as a genera purpose paralel simulation executive because of the
potential for extremely poor performance in certain situations.

2. The problem of overoptimistic execution in Time Warp is solvable. A number
of protocols have been developed and have been demonstrated to achieve good
performance.

3. There is no one protocol that is clearly better than all others in most cases that
arise in practice. For any given simulation application containing an adequate
amount of intrinsic parallelism, several approaches may be used that will be
effective in controlling optimistic execution.

5.4 PUTTING IT ALL TOGETHER: GEORGIA TECH TIME WARP (GTW)

We conclude this chapter by examining a particular Time Warp executive called
Georgia Tech Time Warp (GTW). GTW is a parallel simulation executive designed
to execute on networked uniprocessor and multiprocessor machines. Here, we
specifically discuss the version that executes on shared-memory multiprocessors.
GTW includes a variety of agorithms and techniques designed specificaly for this
class of parallel computers that have not been discussed thus far.

5.4.1 Programmer's Interface

The GTW executive was designed to provide a modest set of basic simulation
primitives, while allowing more sophisticated mechanisms to be implemented as
library routines. For example, GTW supports an event-oriented world view.
Mechanisms for more complex world views such as process-oriented simulation
must be built on top of the GTW executive.

A GTW program consists of a collection of logical processes that communicate
by exchanging time-stamped messages. The execution of each LP is entirely
message driven; that is, any execution of application code is a direct result of
receiving a message. LPs cannot "spontaneously" begin new computations without
first receiving amessage. Each LP has three procedures associated with it: The IProc
procedure is called a the beginning of the simulation to initialize the LP and
generate the initial messages, the Proc procedure (also called the event handler) is
callednonprotassaraasganeceived by the LP, and an optional FProc procedure is
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caled at the end of the simulation, typically to output application specific statistics.
These procedures, and the routines that they call, completely specify the behavior of
the LP. Each LP is identified by a unique integer M.

In addition the user must provide a procedure for global initialization of the
simulation. This procedure is passed command line arguments and must specify the
number of logical processes, the IProc, Proc, and FProc procedures for each Lp, and
the mapping of LPs to processors.

LPs may define four different types of date:

1 A date that is automatically checkpointed by the GTW executive.

2. A date that is incrementally checkpointed using GTW directives invoked by
the application.

3. Loca (sometimes called automatic) variables defined within the IProc, Proc,
and FProc procedures.

4. Global variables that are not checkpointed.

The fourth category is intended to hold data structures that are not modified during
the smulation. The state vector of each LP is an arbitrary data structure defined
within the application program.

During initialization (typically in the IProc procedure), the application program
must specify the memory locations that are automatically checkpointed. A copy of
the LP's automatically checkpointed state is made prior to each invocation of its
event handler, transparent to the application. Incrementally checkpointed variables
must be individually copied through explicit calls to GTW primitives. A variable
needs only to be checkpointed once in each event, but it must be checkpointed prior
to any modification of the variable within the event. Any dtate that is dynamically
allocated after the initidization phase of the simulation must be incrementally
checkpointed. Incremental checkpointing by overloading the assignment operator in
C++ is dso provided in a layer above the GTW executive.

Two procedures are provided for message passing. The TWGetMsg procedure
allocates a message buffer by storing a pointer to the buffer in a GTW-defined
variable. The TWSend procedure sends the message.

5.4.2 1/0O and Dynamic Memory Allocation

Application programs may also schedule events that will not be processed until GVT
exceeds the time stamp of the event, guaranteeing that the computation will not be
later rolled back. This alows application programs to perform irrevocable operations
suchyesOxSuchevents,areeferred to, as 1 /O events, athough event handlers for
1/O events may perform arbitrary computations and do not need to actually perform
any 1/O operations. A different event handler may be associated with each 1/0
event. An LP'may schedule an“l/O event for itself or for another LP.

The GTW executive providestwo types of | /O events. Blocking I/O events do not
allow optimistic execution ofthe LP beyond the time stamp of the 1/O event. Thisis
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intended for |/O operations requiring input from external sources. In this casethe LP
cannot compute forward until it recelves this input, so it is better to simply block the
LP rather than optimistically execute it beyond the time of the 1/O event. The LP is
temporarily blocked once a blocking 1/0 event becomes its smallest time-stamped,
unprocessed event. The LP remains blocked until it is either rolled-back (the LP will
again block once the rolled-back events are reprocessed, if the 1/0O event has not
been canceled), or until GVT advances to the time stamp of the blocking 1/0 event.
Once the event handler for the I/O event is cdled, the LP resumes normal optimistic
execution. The event handler for blocking I/O events can access the LP's state vector.

Nonblocking I/O events do not temporarily block LPs as described above. The
event handler for these events cannot access the state vector of the LP, since the LP
will typically have advanced beyond the time stamp of the I/O event when the I/O
event handler is caled. All data needed by the 1/0O event handler must be included
within the message for the event. Output operations will typically use nonblocking
/O events.

Mechanisms are provided to attach handlers, called rollback handlers, to events
that are executed when the event is rolled back or canceled. This, and |I/O events, are
used to implement dynamic memory alocation. Specificaly, dynamic memory
alocation in GTW must be performed by caling a GTW procedure called
TW_malloc (). TW_malloc () calls malloc (), the memory alocation proce-
dure in the C programming language, and attaches a rollback handler to the event
that is now being processed. The rollback handler contains a cal to the free ()
procedure to release the memory if the event is rolled back or canceled, avoiding
memory leaks as was discussed in Chapter 4. Memory must be released by calling
the TW_free () procedure which schedules a nonblocking I/O event. The 1/0
event handler contains a call to free (). This ensures that memory is not released
until it is guaranteed the memory really is no longer needed. If the event calling
TW_free () is rolled back or canceled, the 1/0 event will be automaticaly
canceled via GTWSs rollback mechanism.

5.4.3 GTW Data Structures

Each data structure in the GTWexecutive is said to be "owned" or "reside" on a
specific processor. In principle, no such specification is required because dl memory
can be accessed by any processor in a shared-memory system. However, the GTW
design assigns each data structure to a unique owner (in some cases the owner may
change during execution) in order to ensure that synchronization (for example,
locks) is not used where it is not needed and to maximize locality in memory
references. Synchronization and nonlocal memory references are typically much
more time-consuming than local memory references on most existing multiprocessor
platforms.

Time Warp uses three distinct types of memory objects: events stored in the input
queue, anti-messages stored in the output queue, and state history information stored
in the state queue. In GTW these are, in effect, combined into a single object type,
the epantobiaaTEkaexap0ohj ect includes a copy of the automatically checkpointed
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portion ofthe state of the LP, and pointers that are used to implement anti-messages,
as will be described momentarily. Each processor contains a single event queue data
structure that implements the functionality of the input, output, and state queues for
the logical processes mapped to that processor.

The event queue data structure is shown in Figure 5.13. Each LP contains a list of
the processed events for that LP. This list is sorted by receive time stamp and is
implemented using a linear list. Unprocessed events for al LPs mapped to the same
processor are stored in a single priority queue data structure. Using a single queue
for al LPs eliminates the need for a separate "scheduling queue" data structure to
enumerate the executable LPs, and this alows both the selection of the next LP to
execute and location of the smallest time stamped unprocessed event in that LP to be
implemented with a single dequeue operation. The single-queue approach reduces
the overhead associated with "normal" event processing, and as discussed later,
greatly smplifies the GVT computation. A drawback with this approach is that
migration of an LP to another processor by a dynamic load management mechanism
is more difficult because the events for a specific LP are intermixed with events for
other LPs in the priority queue holding unprocessed events, requiring one to extract
the events from this data structure. To circumvent this problem, GTW alows a
processor to be configured with multiple priority queues, with each LP assigned to
one queue. The set of LPs mapped to a single priority queue, referred to as a cluster,

processor 1

] d unprocessed events

LP,

|
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! LP;
I

Figure 5.13 Event queue data structure in GTW
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is the atomic unit that is migrated between processors by the dynamic load
management software.

In addition to the event queue shown in Figure 5.13, each processor maintains
two additional queues to hold incoming messages from other processors. The
message queue (MsgQ) holds incoming positive messages that are sent to an LP
residing on this processor. Messages are placed into this queue by the TWSend
primitive. The message cancellation queue (CanQ) is similar to the MsgQ except
that it holds messages that have been canceled. When a processor wishes to cancel a
message, it engqueues a pointer to the message being canceled into the CanQ of the
processor to which the message was originaly sent. Logically each message
engueued in the CanQ can be viewed as an anti-message; however, it is a pointer
to the message itself rather than an explicit anti-message that is enqueued, as will be
described momentarily. Separate queues are used to hold messages generated by
other processors (as opposed to the processors directly manipulating the data
structures shown in Fig. 5.13) to avoid using time-consuming synchronization
locks to access the event queue.

Each processor also maintains another priority queue called the I/0O queue which
holds /O events (as well as some non-1/0 events) for LPs mapped to that processor.
I/0 events are scheduled in exactly the same way as ordinary events; that is, they are
enqueued in the unprocessed event priority queue via the MsgO if the sender and
receiver are on different processors. This simplifies cancellation of /O events. Just
prior to calling an event handler, the GTWexecutive first checksto seeif the event is
an 1/O event. 1/O events are placed in the I/O queue, and the cdl to the event
handler is deferred until later. If the event is a blocking 1/O event, the LP is dso
marked as "blocked." All events for blocked LPs, both I/O and non-1/O events, are
similarly diverted to the 1/0 queue when they are removed from the unprocessed
event queue. If a blocked LP is rolled back, it becomes unblocked, and the LP's
events in the I/O queue are returned to the unprocessed event queue. The fossil
collection procedure processes 1/0 events with time stamp less than or equal to
GVT, and unblocks blocked LPs.

5.4.4 Direct Cancellation

As noted earlier, it is important that Time Warp systems provide a mechanism to
rapidly cancel incorrect computations and prevent the "dog chasing its tail" effect
described in Section 5.2.1. GTW uses a mechanism called direct cancellation to
speed the cancellation of incorrect computations. Rather than using copies of
messages to implement anti-messages, pointers are used. Whenever an event
computation schedules (sends) a new event, a pointer to the new event is left
behind in the sending event's data structure (see Fig. 5.13). Because the new event is
often stored on a different processor than the event that scheduled it, this technique
requires a pointer in a data structure in one processor to point to a data structure in
another processor. This is easily implemented on shared-memory machine archi-
tectures where different processors have acommon address space. A variation on this
apprvadiysiingdiiae€ Hhe distributed-memory version of GTW, where arrays
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of pointers to events and array indices are used to implement pointers across
processors with distinct address spaces.

To support direct cancellation, each event contains two pointer variables, called
Cause and NextCause. The events scheduled while processing one event are stored
as alinked list referred to as the causality list. The Cause field is a pointer to the first
event in this list, and NextCause contains a pointer to the next event in the causality
list. For example, in Figure 5.13 event E} scheduled two events, E2 and Es- E2 has
since been processed but E; has not. If E; is rolled back, E2 and Es would be
canceled by enqueueing them into the CanQ data structure in processors 2 and 3,
respectively.

The principal advantages of direct cancellation are that it eliminates the need for
explicit anti-messages and an output queue, thereby economizing on storage, and
more important it eliminates the need to search queues to locate events that must be
canceled. Direct cancellation can be used with either the lazy or aggressive
cancellation policy.

5.4.5 Event-Processing Loop

After the simulator is initialized, each processor enters a loop that repeatedly
performs the following steps:

. All incoming messages are removed from the MggQ daa structure, and the
messages are filed, one a a time, into the event queue data structure. If a
message has a time stamp smaller than the last event processed by the LP, the
LP is rolled back.

2. All incoming canceled messages are removed from the CanQ data structure
and are processed one a a time. Storage used by canceled messages is
returned to the free memory pool. Rollbacks may also occur here, and they are
handled in essentialy the same manner as rollbacks caused by straggler
positive messages, as described above.

3. A single unprocessed event is removed from the priority queue holding
unprocessed events for the processor and is processed by calling the LPs
event handler (Proc procedure). A smallest time stanp first scheduling
algorithm is used; that is, the unprocessed event containing the smallest
time stamp is selected as the next one to be processed.

These steps continue until the simulation has been completed. The application
specifies the simulation time a which execution completes. Events that are
scheduled with a time stamp larger than the end time are discarded. The simulation
ends where there are no unprocessed events remaining in the system.

5.4.6  Buffer Management

The principal atomic unit of memory in the GTW executive is a buffer. Each buffer
contains the storage for a single event, a copy of the automaticaly checkpointed
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state, pointers for the direct cancellation mechanism and incremental state saving,
and miscellaneous status flags and other information.

The origina implementation of the GTW software (version 1.0) used receiver-
based free pools. This means that the TwWGetMs g () routine allocates a free buffer
from the processor receiving the message. The sender then writes the contents of the
message into the buffer and cals Twsend () to enqueue it in the receiving
processor's MsgQ. This approach suffers from two drawbacks. First, locks are
required to synchronize accesses to the free pool, even if both the sender and
receiver LP are mapped to the same processor. This is because the processor's free
list is shared among al processors that send messages to this processor. The second
drawback is concerned with caching effects, as discussed next.

In cache-coherent multiprocessor systems using invalidate protocols, receiver-
based free pools do not make the most effective use of the cache. Buffers in the free
pool for aprocessor will likely be resident in the cache for that processor, assuming
that the cache is sufficiently large. This is because in most cases, the buffer was last
accessed by an event handler executing on that processor. Assume that the sender
and receiver for the message reside on different processors. When the sending
processor alocates a buffer at the receiver and writes the message into the buffer, a
series of cache misses and invalidations occur as the buffer is "moved” to the
sender's cache. Later, when the receiver dequeues the message buffer and executes
the receiver's event handler, a second set of misses occurs, and the buffer's contents
are again transferred back to the receiver's cache. Thus two rounds of cache misses
and invalidations occur with each message send.

A better solution is to use sender-based free pools. The sending processor
allocates a buffer from its local free pool, writes the message into it, and enqueues
it at the recelver. With this scheme, the free pool is loca to each processor, so no
locks are required to control access to it. Also, when the sender allocates the buffer
and writes the contents of the message into it, memory references will hit in the
cache in the scenario described above. Thus only one round of cache misses and
interprocessor communications occurs (when the receiving processor reads the
message buffer).

The sender-based pool creates a new problem, however. Each message send, in
effect, transfers the ownership of the buffer from the sending to the receiving
processor, since message buffers are dways reclaimed by the receiver during fossil
collection or cancellation. Memory buffers accumulate in processors that receive
more messages than they send. This leads to an unbalanced distribution of buffers,
with free buffer pools in some processors becoming depleted while others have an
excess. To address this problem, each processor is assigned a quota of N, ¢ buffers
that it attempts to maintain. After fossil collection, the number of buffers residing in
the processor is checked. If this number exceeds N, the excess buffers are
transferred to a globa free list. On the other hand, if the number of buffers fals
below N, ¢ - A (A isauser-defined parameter), additional buffers are allocated from
the global pool. Counters associated with each event list allow determination of the
number of buffers reclaimed on each fossil collection without scanning through the
list ofvhéardi medikafiad, Com
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5.4.7 Flow Control

The flow control mechanism based on adaptively controlling memory allocation
(described in Section 5.1.7) is used. Specifically, the policy described there is used to
estimate the memory requirements of each processor. | f an LP attempts to schedule a
new event while processing an event E, and no memory buffers are available to hold
the new event, then E is aborted (rolled back, and returned to the list of unprocessed
events). The processor then returns to the main scheduling loop and, unless new
events were received, attempts to reprocess the event. This "abort and retry" cycle
repeats, creating a kind of "busy wait loop" until either a new event with a smaller
time stamp is received or GVT advances and memory is reclaimed.

5.4.8 GVT Computation and Fossil Collection

GTW uses on-the-fly fossil collection (see Section 4.3.1) in order to reduce the time
required to reclaim memory. Each processed event is threaded into both the free list
and the processed event list for the LP after the event has been processed, and the
time stamp of the event is checked to make sure it is less than GVT before the
memory buffer is reused. A GVT algorithm developed specifically for shared-
memory multiprocessors is used to compute GVT. This is described next.

An asynchronous algorithm (i.e., no barrier synchronizations) is used that is
interleaved with "normal" event processing. The algorithm requires neither message
acknowledgments nor special "GV T messages." All interprocessor communication
is realized using a global flag variable GVTFlag, an array to hold each processor's
local minimum, and avariable to hold the new GVT value.

Any processor can initiate a GVT computation by writing the number of
processors in the system into GVTFlag. This flag is viewed as being "set" if it
holds a nonzero value. A lock on this variable ensures that at most one processor
initiates a GV T computation.

Let Tgy7 be the instant in wallclock time that GVTFlag is set. As before, GVT is
defined as alower bound on the time stamp of al unprocessed or partially processed
messages and anti-messages in the system at T, ' Messages are accounted for by
requiring that (1) the sending processor is responsible for messages sent after TevT
and (2) the receiving processor is responsible for messages sent prior to Tgy ' TO
implement (1), each processor maintains a local variable called SendMin that
contains the minimum time stamp of any message sent after GVTFlag is s.
GVTFlag is checked after each message or anti-message send, and SendMin is
updated if the flag is s&t. To implement (2), each processor checks GVTFlag at the
beginning of the main event-processing loop and notes whether the flag was set.
Then, as part of the normal_event-processing procedure, the processor receives and
processes al messages (anti-messages) in MsgQ (CanQ) and removes the smallest
time-stamped event from the unprocessed event queue. If GVTFlag was set at the
beginning of the loap, the time stamp of this unprocessed event is a lower bound on
the time stamp of any event sent to this processor prior to Ty The processor
computes the minimum of this time stamp and SendMin, and writes this value into
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its entry of the global array. It then decrements GVTFlag to indicate that it has
reported its local minimum, and resumes "normal" event processing. The set
GVTFlag is now ignored until the new GVT value is received.

The last processor to compute its local minimum (the processor that decrements
GVTFlag to zero) computes the global minimum and writes thisnew GVT value into
aglobal variable. Each processor detects the new GV T and updates its local copy of
this value.

The overhead associated with this algorithm is minimal. When GVT is not being
computed, GVTFlag must be checked, but this overhead is small because the flag is
not being modified and will normally reside in each processor's local cache. No
synchronization is required. To compute GVT, the principal overheads are updating
GVTFlag and SendMin, and the global minimum computation performed by one
processor. Performance measurements indicate that even with frequent GVT
computations (for example, every millisecond) the parallel simulator is only slightly
slower than when GVT computations are infrequent.

5.4.9 Incremental State Saving

Incremental state saving is implemented by defining an array or words for each LP
into which values of state variables are stored prior to modification by an event.
Logically this array can be viewed as a single, large array, but it is actually
implemented as alinked list of fixed sized arrays. Each state save operation advances
apointer into the array to the next location, and copies aword from the LPs state into
the array. When rollback occurs, the old contents of state variables are restored, one
after the other, until the point of rollback is reached.

5.4.10 Local Message Sends

The TWSend () routine first checks if the destination LP is mapped to the same
processor as the sender. If they are the same, TWSend () simply enqueues the
message in the unprocessed event queue, bypassing MsGQ and thus avoiding
synchronization overheads. Thus local message sends are no more time-consuming
than scheduling an event in a sequential simulation.

54.11 Message Copying

The GTW executive performs no message copying, neither in sending nor receiving
messages. This alows efficient execution of applications using large messages.
Software executing above the GTW executive must ensure that the contents of a
message are not modified after the message it sent and that the contents of received
messages are not modified by the event handler.

5.4.12 Batch Event Processing

The scheduling loop aways checks MsgQ and CanQ prior to processing each event.
Rather than checking these queues before each event, an alternative approach is to
cheginthasermme@sana @agrprocessing a batch of B events, thereby amortizing the
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overhead of each queue check over many events. |If there are no B events available to
be processed, the queue is checked after processing those that are available.

The batch-processing approach reduces queue management overheads somewhat,
but it may lead to more rolled back computation because, in effect, the arriva of
straggler and anti-messages is delayed. Thusit is clear that B should not be set to too
large avalue. Setting the batch size is left to user.

5.4.13 Performance Measurements

GTW has been successfully applied to speeding up simulations of asynchronous
transfer mode (ATM) networks, wireless networks, and commercial air traffic
systems. It is currently being used extensively to model commercial air traffic
both in the United States and around the world for development of future expansions
of air transportation services. This work involves use of a simulation model called
DPAT (Detailed Policy Assessment Tool) running on GTW that was developed by
Mitre Corp. At the time of this writing, work is in progress by Mitre to install GTW
in the Federal Aviation Administration's air traffic control center as an on-line tool to
manage the air traffic space when new conditions develop in the air traffic space (for
example, thunderstorms reducing capacity of certain airports).

Figure 5.14 shows GTW performance in simulating awireless personal commu-
nication services (PCS) network. This simulation models a wireless network
providing communication services to mobile PCS subscribers. The service area is
partitioned into subareas or cells, with each cell containing a receiver/transmitter
and a fixed number of channels. When a portable (cellular telephone) moves from
one cell to another, it must stop using one transmitter/receiver, and begin using
another. Thus a new radio frequency channel must be alocated in the new cell to
maintain the call. If no channels are available, the call is dropped. It is important that
the network be engineered 0 that the number of dropped calls remains below a
certain level, such as 1% of calls transmitted through the system.

Execution Speed 795K
(committed events per second)

28K___BOK [T
2 4 8 16 32 49

Processors

Figure 514 ‘GTW. performance in-simulating a wireless personal communication services
network.

55 SUMMARY 171

The specific simulation used here consists of 2048 cells (each modeled by a
logical process), and 50,000 portables. The simulation was executed on a Kendall
Square Research KSR-2 multiprocessor; each KSR processor is approximately 20%
faster than a Sun Sparc-2 workstation, based on measurements of sequential
simulations. Figure 5.14 shows the average number of events committed by the
simulator per second of wallclock time, referred to as the event rate, for different
numbers of processors. The size of this model prevented execution on a sequential
computer; however, based on measurements of smaller models, the event rate is
estimated to be between 15,000 and 20,000 events per second. Thus this simulation
yields approximately fortyfold speedup on 49 processors. One anomaly in these
measurements is the simulation achieves super linear speedup, hamely more than
two times a performance improvement as the number of processors is doubled. This
is because as the number of processors increases, the amount of cache memory
provided to the simulation increases, so a larger fraction of the program resides in
cache memory, leading to a disproportionate improvement in performance.

55 SUMMARY

While the previous chapter focused on fundamental mechanisms used in Time Warp
systems, this chapter presented the techniques used to develop efficient optimistic
parallel simulation systems. A principal concern with Time Warp, as originally
proposed, is the amount of memory required to execute the simulation. It was seen
that memory management protocols provide a means for Time Warp to execute
within a constant factor of the amount of memory required for a sequential execution
when executing on a shared-memory multiprocessor. More generaly, an important
problem that must be addressed in practical Time Warp systems is preventing over-
optimistic execution. Controlling memory allocation is one approach to solving
this problem. Several other synchronization protocols were discussed, most using
fundamental concepts used in Time Warp (for example, rollback, anti-messages,
GVT) that provide an effective means to control execution. Finally the implementa-
tion of the GTW system, a parallel discrete event simulation executive based on
Time Warp, was described. Severa techniques exploiting shared memory, such as
buffer management techniques and GVT algorithms, were described.

Practical experience with optimistic parallel simulation indicates that runaway
optimism can be controlled, and that efficient parallel simulation executives can be
developed using these techniques. An intuitive explanation as to why runaway
optimism tends not to be a severe problem is that erroneous computations can only
be initiated when one processes a correct event prematurely; this premature event,
and subsequent erroneous computations, must have time stamps that are larger than
the correct, straggler computation. Also, the further the incorrect computation
spreads, the larger its time stamp becomes, lowering its priority for execution
since preference is normally given to computations containing smaller time stamps.
Thus Time Warp systems automatically tend to dow the propagation of errors,
all owingy\tHiner v kol oitand correction mechanism to correct the mistake before
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too much damage has been done. A potentially more dangerous situation is when the
erroneous computation propagates with smaller time stamp increments than the
correct one. However, even here, awide variety of solutions exist to control runaway

optimism if it does appear.

5.6 COMPARING OPTIMISTIC AND CONSERVATIVE
SYNCHRONIZATION

Unfortunately, the years of research in synchronization protocols do not revea a
clear winner for al applications. The fact remains that the optimal proto.col for any
particular situation is problem dependent. One can, however, give guidelines gn
which approach is appropriate for which situations. Important distmctilOns among
these approaches are summarized in Table 5.1.

Simulation executives based on conservative protocols are generally less complex
than those based on optimistic synchronization. If the simulation has large 1091(?'
heads, the synchronization mechanism will not have to be invoked very frequently n
a well-designed system. This will result in lower runtime overheads. than m
optimistic executives because optimistic protocols must create and fOSSI collect
history information. State saving is perhaps the most cumbersome among the
optimistic overheads. But, as was seen in Chapter 4, relatively ordmary tasks such

TABLE 51 Comparing conservative and optimistic synchronization

Protocol Conservative Optimistic

Complex simulation
executive requires state
saving, fossil collection;
special mechanisms for
dynamic memory

Overheads Simple simulation
executive; may need
special mechanism for
dynamic LP topology;
lower overheads if good

lookahead alocation, 1/0O, runtime
errors
Parallelism Limited by worst-case Limited by actual

dependencies (rather than
potential dependencies)

scenario; requires good
lookahead for concurrent
execution and scalability )
Application development Potentially complex, fragile More robust; less reliant on
code to exploit lookahead lookahead; greater
transparency of the
synchronization

mechanism
Legacy simulators Straightforward inclusion in Requires additional
federations mechanisms (e.g., state
saving) to support
rollback
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as dynamic memory alocation, runtime errors, and 1/O that can be implemented
using conventional programming methods in conservative systems require inclusion
of gpecid mechanisms in optimistic systems. While relatively straightforward
solutions to these problems exist, they do add to the complexity of the simulation
executive. One area where conservative systems do incur additional overheads that
do not arise in optimistic systems is when the topology among logical processes
changes during the execution. |f the simulation protocol uses topology information,
such as the distance between processes approach, an additional mechanism is
required. But, on balance, optimistic systems are generally more complex than
conservative ones.

But the Achilles's heel for conservative protocols is the need for lookahead to
achieve good performance. As illustrated in Chapter 3, conservative protocols
perform poorly if there is little or no lookahead, even if the model contains a
large amount of parallelism. This is illustrated in Figure 5.15 where Time Warp
performance is compared with the conservative null message and deadlock detection
and recovery protocols in simulating a queueing network on eight processors. This
application contains a fixed number of jobs cycling through the network. Figure 5.15
shows speedup as a function of the message density, defined as the number ofjobs in
the queueing network divided by the number of LPs. This particular queueing
network includes a small humber of high-priority jobs that preempt service of other
jobs, resulting in very poor lookahead. As can be seen, Time Warp is able to
successfully extract parallelism from this application, while both conservative
algorithms yield speedup less than one; that is, they run dower than a sequential
execution.

Conservative protocols cannot fully exploit the parallelism in the application
because they must guard against a worst-case scenario, which may seldom actually
occur in practice. A corollary to this observation is that no conservative protocol can
scae unless certain assumptions are made regarding lookahead, except in relatively
speciaized circumstances such as large numbers of events containing exactly the
same time stamp. By "scale" we mean that if the number of L Ps and the number of
processors increase in proportion, the parallel/distributed simulation is able to

81
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processes)
6= —o— Time Warp (16 logical
,/ processes)
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3 2 —— (64 logical processes)
e 7 — Deadlock Avoidance
® 3 (16 logical processes)
J7 —»— Deadlock Recovery (64
24 logical processes)
11 ~s— Deadlock Recovery (64
10 ical rocesses
(0]
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Message Density
(messages per logical process)

Figure 5.15 Performance of Time Warp and conservative protocols on an 8 processor
systéWww.manaraa.com
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maintain approximately the same rate of advance in simulation time per second of
wallclock time. By contrast, parallelism in optimistic protocols is not limited by
potential dependencies between logical processes but rather by the actual depen-
dencies as represented by event interactions. Thus optimistic approaches offer
greater potential for scalability in the absence of lookahead.

As was noted in Chapter 3, not only must the physical system exhibit good
lookahead characteristics, but the simulation must be programmed in a way that
exposes the lookahead to the underlying simulation executive. This may require a
relatively high level of expertise on the part of the simulation programmer. |f
changes to the model are included that affect the lookahead characteristics, such as
the addition of preemptive behavior, substantia revisions to the model may be
necessary. In the worst case, no revision yielding acceptable performance may be
possible.

More important, exploiting lookahead can lead to simulation code that is
complex; This leads to software that is difficult to develop and maintain. Constraints
on dynamically changing the topology of logical processes can further aggravate this
problem. If on€'s goa is to develop a "general purpose’ simulation executive that
provides robust performance across awide range of models and does not require the
model developer to be familiar with details of the synchronization mechanism,
optimistic synchronization offers greater hope.

On the other hand, if one is retrofitting an existing (legacy) sequential simulation
for parallel/distributed processing (for example, by "federating" it with other
simulators, or even itsdf, in a distributed simulation environment), conservative
synchronization offers the path of least effort. This is because there is no need to add
state-saving mechanisms to the simulation code or to ensure that dynamic memory
allocation and /0O are implemented to account for rollback. In the long run one may
be able to automate many of these tasks for optimistic processing, but tools to
support such automation do not yet exist.

5.7 ADDITIONAL READINGS

Memory management in Time Warp dates back to Jefferson's origina paper where
the message sendback mechanism for flow control is discussed (Jefferson 1985).
Cancelback is discussed in Jefferson (1990), and its performance is evauated
empirically and analytically in Das and Fujimoto (1997) and Akyildiz, Chen et d.
(1993), respectively. Lin first defined the storage optimality concept and proposed
the Artificial Rollback protocol (Lin and Preiss 1991). The pruning mechanism and
Pruneback protocol are discussed in Preiss and Loucks (1995). The adaptive,
blockingmbasedmmemorymmanagementgprotocol discussed in Section 5.1.7 is
described in Panesar and Fujimoto (1997). An adaptive version of the Cancelback
protocol is described in Das and Fujimoto (1997).

Numerous' agorithms for controlling optimistic execution in Time Warp have
been proposed. The ‘Moving ‘Time Window algorithm is described in Sokol and
Stucky (1990). Breathing Time Warp is discussed in Steinman (1993). Risk-free
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execution was first proposed in the SRADS protocol (Dickens and Reynolds 1990)
and was aso utilized in the Breathing Time Buckets mechanism (Steinman 1991).
Performance evaluations of this technique are described in Bellenot (1993), and
Wonnacott and Bruce (1996). Risk-free execution is aso used in a rea-time
simulation executive called PORTS (Ghosh, Panesar et d. 1994) because it offers
favorable properties for predicting execution time in simulations. The Wolf Calls
mechanism is described in Madisetti, Walrand et d. (1988), and a variation on this
idea that avoids race conditions in locating LPs to roll back is described in Damani,
Wang et d. (1997). Probabilistic rollbacks are described in Madisetti, Hardaker et d.
(1993). The echo performance hazard was identified in Lubachevsky, Shwartz et d.
(1991) where a blocking-based optimistic protocol is discussed. Severa proposals
for mixing conservative and optimistic LPs have appeared, including Arvind and
Smart (1992), Rgjaei, Ayani et d. (1993), and Jha and Bagrodia (1994).

Several proposals for adaptive synchronization mechanisms have appeared. In
Ball and Hoyt (1990), and Ferscha (1995), processes may be blocked based on
statistical estimates of the time stamp of the next event that will arrive from another
processor. In Harnnes and Tripathi (1994), blocking intervals are based on recent
simulation time advances by LPs. A class of protocols based on rapid dissemination
of global state information is described in Srinivasan and Reynolds (1995). Space-
time simulation is discussed in Chandy and Sherman (1989), Bagrodia, Liao et d.
(1991). Other optimistic protocols include Prakash and Subramanian (1992), Turner
and Xu (1992), Deelman and Szymanski (1997), Fabbri and Donatiello (1997), Tay,
Teo et d. (1997).

The GTWexecutive is described in Das, Fujimoto et d. (1994). GTWs GVT
algorithm, and on-the-fly fossil collection are described in Fujimoto and Hybinette
(1997). The buffer management mechanism is described in Fujimoto and Panesar
(1995). Air traffic simulations using GTWare described in Wieland (1997).
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I CHAPTER 6

Time Parallel Simulation

As discussed in Chapter 2, one can view the simulation computation as determining
the values of a st of date variables across simulation time. The approaches
discussed thus far accomplish this task by partitioning the state variables defined
in the simulation among a set of logical processes. They assign each LP the
responsibility of computing the evolution of its state variables over the duration of
the simulation. As illustrated in Figure 6.1(a), this approach uses a spatial
decomposition approach where the space-time diagram is partitioned into a set of
horizontal strips, with each LP responsible for computing the values of the variables
contained within that strip over simulation time.

Another approach is to use a temporal decomposition of the space-time diagram.
Here, as shown in Figure 6.1(b), the space-time diagram is partitioned into a set of
vertical strips, and alogical process is assigned to each strip. Each LP must perform
a simulation of the entire system for the interval of simulation time covered by its
strip of the space-time diagram.

Stated another way, the simulation computation constructs a sample path through
the set of al possible states in which the system can reside across simulation time
(see Fig. 6.2). A time parallel simulation partitions the simulation time axis into a
sequence of nonoverlapping simulation time intervals [To, Ty, [T;. To), ... . [Th_1s
Tn)' A logical process assigned to the ith window computes the portion of the sample
path within that window.

This so-called time paralel approach to paralel simulation offers severa
attractive properties:

» Massive parallelism. The amount of parallelism in the smulation is potentially
very large because simulations often extend over long periods of simulation
time. Time parallel simulation algorithms typically run out of processors before
they run out of parallelism within the simulation computation.

* Independent logical processes. Once alogical process begins the simulation of
avertical gtrip, it can proceed with this simulation independent of other logical
processes, thereby avoiding expensive synchronization operations throughout
much of the computation. Time parallel simulation agorithms typicaly only
require coordination among the logica processes prior to beginning the

wwveumposiiarabegdirvrip. Thisisin sharp contrast to space-parallel agorithms
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state variables
state variables

simulation time simulation time
(@ (b)

Figure 6.1 Space-time diagram of the smulation computation. (a) Space paralld approach;
(b) time parald approach.

which require continual synchronization among the logical processes through-
out the entire computation.

The central problem that must be solved by the time parallel simulation algorithm
is to ensure that the states computed at the "boundaries" of the time intervals match.
This is referred to as the state-matching problem. Specifically, the state computed at
the end of the ith interval must match the state at the beginning of the ith interval.
But how can one compute the initial state of the ith interval without first performing
the simulation computation for dl prior intervals?

Several approaches to solving the state matching problem for specific simulation
problems have been proposed. The three approaches to be discussed here are as
follows:

» Fix-up computations. Logical process LP;, responsible for the ith time interval,
"guesses' the initial state of the simulation in its time interval and performs a
simulation based on this guess. In general, the fina state computed for the
i — 1 stinterval will not match the initial guess, so LPi must perform a "fix-up"

LPg

possible system states

simu ated time
Figure 6.2 Sample path for a smulation computation.
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computation to recompute the sample path for the ith interval using the fina
state computed by LP,- ; as the initial state for LP,. The fix-up computation
may be to simply repeat the simulation using the new initial state. This process
is repeated until the fina state computed by each interval matches the initial
state of the next interval. When a state match occurs across al of the intervals,
the simulation is completed.

» Precomputation of state at specific time division points. It may be possible to
determine the state of the simulation at specific points in simulation time
without performing a detailed simulation of everything preceding that time. For
example, as will be seen later, one may be able to guarantee a buffer will
overflow in simulating a queue based on the rate of traffic entering the queue
relative to the maximum rate of traffic departing. If this is the case, one may
define the simulation time intervals so that the state of the simulation is known
at the beginning of each time interval, thereby solving the state matching
problem.

 Parallel prefix computations. 1f one can formulate the state of the simulation as
alinear recurrence equation, a parallel prefix computation can be used to solve
the equation over simulation time.

As will be seen momentarily, the solution to the state matching problem requires
detailed knowledge of the simulation application and the statistics that are being
computed. Thus time parallel simulation techniques do not provide a genera
approach to parallel or distributed simulation but rather define a methodology that
can be applied to develop parallel simulation algorithms for specific simulation
problems.

In the following we describe three time parallel simulation algorithms for
simulating a cache memory system, an asynchronous transfer mode (ATM) multi-
plexer, and a G/G/l queue.

6.1 TIME PARALLEL CACHE SIMULATION USING FIX-UP
COMPUTATIONS

The time parallel simulation approach using fix-up computations executes the
following steps:

1 Logical process LP; is assigned an interval of simulation time [T;+,, T;) and
selects an initial state SO(T,_ ) for its interval. More generaly, §(T;) denotes
the state of the system at simulation time T; computed after thejth iteration
(G=1,2, ...).

2. LP, simulates the system over the time interval [T;- ;, T;), computing a final
state S/(T;) for this interval. Each logical process can execute on a separate
processor, and no interprocessor communications is required during this step.

VWY dehaflabagy @ Ihe final state it just computed S/(T;) to LPi+I'




180 TIME PARALLEL SIMULATION

4. If §/(T,_,) does not match the initial state S—YT,_)) used in the simulation for
the interva [T 1 T, then LP, sets its initial state to 8'(7;_) and recomputes
the sample path for its interval. If during this recomputation the state of the
new sample path that is being computed matches that of the previous iteration
(i.e, §/(r) is identical to §/~!(t) for some simulation time t), the process can
stop its computation because the remainder of its sample path will be identical
to that derived from the previous computation.

5. Repeat steps 3 and 4 until the initial state used in each interval matches the
fina state computed for the previous interval for al logical processes.

This process is illustrated graphically in Figure 6.3. As shown in Figure 6.3(a),
each logical process is assigned an interval in the simulation time axis, selects some
initial state, and computes the sample path based on this initial state. The logical
processes execute independent of each other during this phase. Only LPA computed
a correct sample path because it is the only process that used the correct initial state
(the initial state for the entire simulation). Each of the logical processes except LPa
resets its initial state to the find state computed by the LP assigned the immediately
preceding time window. In Figure 6.3(b), the new sample path converges to that

LPg LPc LPn LPg

possible system states.

simu ated time

@)
i
!
g LPs LPc LPn | LPg
=
et
= !
5 .
- ]
2 !
a !
1
% ) E __firstround
'z A f second round
=3 . i
= =

simulated time

(o)
Figure'6.3__Time parallel simulation using fix-up computations. (a) Computation performed
in first round; (b)/fix-up computation in second round.
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computed in the previous iteration for each logical process, s0 the computation
completes after only two iterations. In general, however, more passes may be
required to construct the complete sample path.

Using this approach, the computation for the first interval will adways be
completed by the end of the firgt iteration, the second interval computation will
be completed after the second iteration, and so on. Thus, in the worst case N
iterations will be required to complete the sample path for N intervals' or
approximately the same time for the sequential execution if overhead computations
required in the time parallel execution are negligible. The algorithm will perform
well if the find state for each interval computation does not depend on the initia
state. When this is the case (as in Fig. 6.3), the fina state computed in the firgt
iteration for each interval computation will be correct despite the fact that an
incorrect initial state was used.

This time parallel simulation approach can be applied to simulating a cache
memory in a computer system using a least recently used (LRU) replacement policy.
A cache is a high-speed memory that holds recently referenced memory locations
(data and instructions). The goal is to store frequently used data and instructions in
the cache that can be accessed very quickly, typically an order of magnitude faster
than main memory. Because the cache memory has a low access time, it is
expensive, 0 the computer system may only contain a limited amount of cache
memory. |f data or instructions are referenced by the CPU that do not reside in the
cache, the information must be loaded into the cache, displacing other data/instruc-
tions from the cache if there is no unused memory in the cache. Main memory is
partitioned into a collection of fixed-size blocks (a typical block size is 64 bytes),
and some set of blocks are maintained within the cache. The cache management
hardware includes tables that indicate which blocks are currently stored in the
cache.

The cache replacement policy is responsible for determining which block to
delete from the cache when anew block must be loaded. A commonly used policy is
to replace the block that hasn't been referenced in the longest time, based on the
premise that recently referenced blocks are likely to be referenced again in the near
future. This approach is referred to as the least recently used (LRU) replacement
policy. Due to implementation constraints, cache memories typically subdivide the
cache into sets of blocks, and use LRU replacement within each set.

Time parallel simulation can be effective in simulating cache memories, particu-
larly those using LRU replacement because the find state of the cache is seldom
dependent on the cache's initid state for "reasonably long" strings of memory
references. This is because subsequent references will tend to load new blocks into
the cache, eventualy displacing the cache's original contents.

The input to the cache simulation is a sequence of memory references. Each
reference indicates which block of memory is being referenced. The sequence is
partitioned into N subsequences, one for each logical process (i.e., each processor)
participating in the simulation.

The state of the cache is a list of the blocks that are currently stored in the cache.
Thegnhoakeearssta@ito|data structure known as the LRU stack. When ablock is
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referenced, the LRU stack is searched to determine if the block already resides in the
cache. If it does, a cache "hit" is said to occur, and the block is removed and placed
on top of the stack. Removing a block from the stack causes the blocks above it to
move down one position in the stack, much like removing atray from the middle of a
stack of trays in a cafeteria. Thus blocks that have been referenced recently will be
near the top of the stack, while those that have not been referenced recently tend to
sink toward the bottom of the stack. The block that has not been referenced for the
longest time, that is, the least recently used block, will be at the bottom of the stack.

If the referenced block is not in the stack, the block does not reside in the cache
and amiss is said to occur. The block must now be loaded into the cache. To make
room, the block at the bottom of the stack (the LRU block) is deleted from the stack,
causing all blocks to slide down one position. The newly referenced block is placed
on top of the stack.

For example, Figure 6.4 shows the execution of a time parallel simulation for a
single set of a cache memory system containing four blocks. The addresses listed
across the top of the figure indicate the blocks that are referenced by successive
memory references. A time parallel simulation using three logical processes is used.
Each LP initially assumes the cache is empty as its initial state. LPa first references
blocks | and 2, with each causing amiss. Block | isthen referenced again, causing it
to be moved to the top of the LRU stack. Blocks 3 and 4 are referenced and loaded
into the stack. When block 6 is referenced, the LRU block (block 2) at the bottom of
the stack is deleted. The time parallel simulation divides the input trace of memory
references into three segments, and each LP independently processes its trace,
assuming that the cache is initially empty. Figure 6.4(a) shows the sample path
computed by each LP during the first round of the simulation.

In the second round of this computation LPa is idle because it correctly computed
its portion of the sample path in the first pass. LPg recomputes its sample path using
the final state computed by LPa as the initial state for its cache. Similarly LPc

address: | 12134367 21269336| 42317274

12134367|21269336/423117274

lRU | _1213436|-21 3| -A23 17727

Stack: | . . .21 143|---12669| - -4|23112
- -221 4|+ ---{222|---l42331
LPa LPg LPc

(a)
address: | 12134367 21269336| 42317274

(idle) 2126 423
LRU 7 2 1 2|@match! 6 4 2[3 match!
Stack: 6771 364 |2
3667 936 4
LPA LPg LPc

(b)

Figure 6.4 'Example execution of time parallel cache simulation. (a) Execution during the
first round using empty caches as the initial state; (b) execution during the second round.
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recomputes its sample path using LPB's final state after the first iteration. After
simulating the fifth memory reference in its trace, LPg observes that the state of the
cache is now identical to what it had computed after the fifth memory reference in
the first round. Therefore the remainder of its sample path will be identical to that
computed in the first round, so there is no need to recompute it. Similarly LPc's
recomputation becomes identical to that computed in its first round after only four
memory references, so it can also stop. LPgand LP¢ need only replace the first four
and three stack states, respectively, in the first round simulation with the new values
computed in the second round to reconstruct the entire sample path.

In general, the LRU replacement policy guarantees that i f the number of blocks in
the set is k, the state of the simulation will be independent of the initial state of the
cache after k different blocks have been referenced. Thus, if each subsequence of
memory references used by the logical processes references at least k different
blocks, the time parallel simulation will require only two steps to compute the
complete sample path.

6.2 SIMULATION OF AN ATM MULTIPLEXER USING REGENERATION
POINTS

The points where the time axis was partitioned in the cache simulation could be
made arbitrarily, so time intervals were defined with an equal number of memory
references in each interval assigned to each logical process in order to balance the
workload among the processors. The time parallel simulation algorithm described
next selects the time division points at places where the state of the system can be
easily determined. Specifically, the simulation time axis is broken at regeneration
points; these are points where the system returns to a known state.

Asynchronous transfer mode (ATM)25 networks are a technology that has been
developed to better support integration of awide variety of communication service-
voice, data, video, and faxes-all within a single telecommunication network. These
so-called Broadband Integrated Services Digital Networks (B-1SDN) are expected to
provide high bandwidth and reliable communication services in the future. Messages
sent into ATM networks are first divided into fixed-size cells that then form the
atomic unit of data that is transported through the network.

A multiplexer, depicted in Figure 6.5, is a component of a network that combines
(concentrates) several streams of incoming traffic (here, ATM cells) into a single
output stream. The incoming lines might represent phone lines to individual
customers, while the out-going line represents a high-bandwidth trunk line carry
traffic for many customers. The bandwidth of the outgoing line is usually smaller
than the sum of the bandwidths of the incoming lines. This means that cells will
accumulate in the multiplexer if the total incoming traffic flow exceeds the capacity
of the output link. For this purpose the multiplexer contains a certain amount of

25 An unfortunate acronym. ATM networks are not to be confused with automated teller machines used by
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Figure 65 An ATM multiplexer with N inputs. The circuit contains a fixed szed buffer.
Data (cells) are logt if the buffer overflows.

buffer memory to hold cells waiting to be sent on the outgoing link. To simplify its
design, if the buffer memory overflows (i.e.,, anew cell arrives but the outgoing link
is busy and there is no unused buffer space in which to store the cell), the cell is
simply discarded. A goa in designing a multiplexer is to provide sufficient buffer
memory to ensure that the expected number of lost cells is below some design goal,
typically on the order of only one lost cell per 10° successfully transmitted cells.
Since cell losses are rare, very long simulation runs are required to capture a
statistically significant number of cell losses.

Assume that each of the incoming links can transmit B cells per second, and the
outgoing link is of bandwidth C x B cells per second, where C is an integer. Link
bandwidths are normalized so that the input link has unit bandwidth, and the output
link has bandwidth C. Here, the unit of time that is used is the amount of time
required to transmit a single cell over an input link. This quantity is referred to as a
cell time. C cells may be transmitted by the output link during a single cell time.

A traffic generator (called a source) transmits cells on each incoming link. A
separate source is attached to each incoming link of the multiplexer. The traffic
produced by each source can be viewed as a sequence of "on" and "off" periods.
When the source is on, it transmits cells, one per cell time, over the link. When the
source is off, no cells are transmitted. This behavior is depicted in Figure 6.6.

The stream of incoming cells to the multiplexer can be characterized as a
sequence of tuples (AiI' 6;) (i = 1,2,3, ...), where Ai denotes the number active or
"on" (transmitting cells) sources, and §; denotes the length of time that exactly this
number of sources remain active. For example, in Figure 6.6 the input is character-
ized by the tuples (1,4), (4,2), (3,4), and so on, meaning initially one source is
active for four units of time, then four are active for two units of time, then three for
four units of time, and so on.

The simulation problem is formulated as follows. Consider a multiplexer with N
input links of unit capacity, an output link with capacity C, and a FIFO gueue
containing K buffers, with each buffer able to hold a single cell. Any cells arriving
when the queue is full_are discarded. The simulation must determine the average
utilization and number of discarded cells for incoming traffic characterized by the
sequence of tuples |(Ai* o,), as|depicted in Figure 6.6.

Let T; denote the simulation time corresponding to the end of the ith tuple, with
To denoting the beginning of the simulation which is equal to zero. The state ofthe
simulation-model &t any instant of simulation time is simply the number of cells
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<1,4>  <4,2> <3,4> <43> <32>} <13>

inputlz..........r

input 2 ——————1 ——
[ off

-On

iNpUL 3 [ = = = = - - ‘:I........i:::;:

input4———————::.....:..........:

simulation time
(cell times)

Figure 6.6 Onjoffperiods of four sources. The input to the multiplexer is characterized by a
sequence of tuples (Ai' §,), where A indicates the number of on sources and 6, indicates the
duration (in cdl times) that this number of sources are active.

stored in the queue. Let Q(7;) denote the number of cells stored in the queue at time
T;. Let S(T}) denote the total number of cells serviced (transmitted on the output
link) and L(T};) denote the number of cells lost up to time T,. The notation used for
this simulation is summarized in Table 6.1. All of these quantities are integers.

During each time interval the multiplexer will be in one of two possible
Situations:

1 Underload: Ai < C. The number of active sources is less than or equal to the
output link capacity; that is, the rate that cells are flowing into the multiplexer
is less than or equal to the outgoing rate, so the length of the FIFO queue (Qi)
is either decreasing or remains the same. No cell losses can occur during an
underload period.

TABLE 6.1 Symbols used in multiplexer smulation

N Number of input links

C Capacity of the output link

K Number of buffers

A Number of active sources during ith time interva

Length of ith time interva

Time marking the end of the ith interva

QT;) Length of the queue at time T;; Q(Ty) =0

SeT;) Totd number of cels tranamitted on output & time T;; S(To) = 0
L(Ty) Total number of cell logt up to time T;; L(Ty) =0
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2. Overload: Ai > C. The rate of cells entering the multiplexer exceeds the
capacity of the outgoing link, so the length of the FIFO queue is increasing.
All cell losses occur during overload periods.

During each time unit Ai cells are received on the input links and C cells are
transmitted on the output link. During an overload period the queue fills at arate of
(Ai - C) cells per unit time, unless the queue becomes full. If the queue becomes
full, the queue length remains fixed at K, and the additional cells that could not be
placed into the queue are lost. Conversely, during an underload period the queue is
drained at arate of (C- Ai) cells per unit time, unless the queue becomes empty.
Thus the length of the queue can be computed as

Q(Tj) = min(Q(Ti_j) ¥ (Qi - C)d;,K) ifAi > C (overload)

: o 6.)
= max(Q(Ti_j) - (C— 4,)d;,0) if Ai < C (underload).

The number of serviced and lost cells can be computed by accounting for al cells
during each time period, which is the time represented by a single tuple. Specifically,
a the beginning of the ith time period there are Q(Ti=i) cells buffered in the
multiplexer. During this time period 4;0; additional new cells are received by the
multiplexer. At the end of the time period, there are Q(7}) cells remaining. The
difference between these two quantities, (Q(Tj-i) T 4,8;) - Q(T,), corresponds to
cells that were either serviced or lost during the time period.

First, let us compute the number of serviced cells. During an underload period no
cells are lost. Thus al of the (Q(T;- ) +4;0;) - O(T;) cells derived in the previous
paragraph represent cells that were serviced. Now consider an overload period.
Observe that the output link transmits C cells per unit time so long as the queue is
not empty. Because the queue cannot become empty during an overload period, the
number of serviced cells increased by CJ,. In other words,

S(Ty) = (Ti_j) + C9; if Ai > C (overload)

= ST+ (QT-p +4,0) - OT)  iTAIC (underload). 2

The utilization of the output link is computed as the total number of cells serviced
during the simulation divided the number of cells that could have been serviced
during the length of the simulation. Specificaly, if the simulation ends at time Tm
(i=es-the simulation.includes. M intervals; or M tuples), the output link utilization is
S(TM)/CTMm-

Now consider lost cells. No cells are lost during underload. During overload, the
number of cells either lost or ‘serviced is (Q(Tj- ) +4,3,) - O(T;), as discussed
earlier. The number 'of serviced cells is easily computed because as was observed
in computing S(z,), C cells will be serviced per unit time during overload. The
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difference between these two quantities is the number ofl ost cells during the ith time
period. Thus we have

L(T) = L(Ti_i) ¥ (Q(Ti- i) ¥ 4:0) - AT;)- C4;  if Ai > C (overload) (6.3)
=L(T) if Ai < C (underload).

These equations for computing Q(Tj), S(7;), and L(T;) enable one to simulate the
behavior of the multiplexer. To perform atimeparallel simulation of the multiplexer,
the sequence of tuples is partitioned into P subsequences, where P is the number of
processors available to perform the simulation, and a subsequence is assigned to
each one. The principal question that must be answered is again the state-matching
problem, or here, What is the initial state (the initial length of the queue) for each
subsequence assigned to each processor?

This state-matching problem can be solved if the length of the queue at certain
points in simulation time can be computed during a (parallel) precomputation phase.
One could then partition the tuple sequence at points in time where the state of the
multiplexer is known. Two key observations are used to determine the state of the
multiplexer at specific points in time:

1. Guaranteed overflow. Consider a tuple defining an overload period. If the
length of the overload period is sufficiently long that even if the queue were
empty at the beginning of the tupl€e's period, the buffer is guaranteed to be full
by the end of the period, then it would be known that the length of the queue is
K at the end of the tuple period. A tuple with this property is referred to as a
guaranteed overflow tuple.

2. Guaranteed underflow. Similarly consider a tuple defining an underload
period. In this case the queue is being drained. If the duration of the tuple
is sufficiently long that the queue will be empty at the end of the tuple's period
even if the queue were full at the beginning of the period, then the tuple is said
to be a guaranteed underflow tuple, and the queue must be empty at the end of
the tuple's period.

More precisely, the conditions for (Ai* ;) to be a guaranteed overflow (underflow)
tuple are

Guaranteed overflow:

if (A - O),; > K,
then O(T)) = K. (6.4)
Guaranteed underflow:

if (C- 4)9; = K,
www.maharaa.com then Q(T) = O.
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The time parallel simulation algorithm for the ATM multiplexer operates as follows.
Given a sequence of tuples (AI' 3,), i = 1,2, ...:

1 Identify a set of guaranteed overflow or underflow tuples G by applying
conditions (6.4). This can be accomplished by assigning an equal length
subseguence to each processor, and by having each processor search from the
beginning of its subsequence for a guaranteed overflow or underflow tuple.
The tuples in G define the time division points a which the simulation time
axis is broken, as shown in Figure 6.2.

2. For each processor, if the ith tuple is found to be a guaranteed overflow tuple,
set O(7T;) to K; if the ith tuple is a guaranteed underflow tuple, set O(T;) to O.

3. For each processor, compute Q(7;), S(T;) and L(T,) using equations (6.1),
(6.2), and (6.3) defined above for each tuple, starting with the tuple following
the guaranteed overflow (or underflow) tuple. Assume that SandL areinitially
zero for each subsequence; that is, each processor only computes the number
of serviced and lost cells for the subsequence assigned to it (not a cumulative
total for the entire simulation). When this has been completed, send the queue
length at the end of the subsequence to the processor assigned the next
subsequence. Upon receipt of this information, the processor can simulate the
tuples assigned to it that preceded the guaranteed overflowlunderflow tuple.

4. Compute the total number of serviced and lost cells by summing the values
computed for these quantities by each processor.

This algorithm relies on being able to identify a guaranteed overflow or underflow
tuple in the subsequence assigned to each processor. The agorithm fails if any
processor does not locate a guaranteed underflow or overflow tuple. In general, it is
impossible to guarantee such a tuple will be found. In practice, because cell losses
are S0 rare, there will usually be an abundance of guaranteed underflow tuples. An
alternative approach to this problem is to examine short sequences of tuples in order
to identify a sequence that results in a guaranteed underflow (overflow), even though
individual tuples within the sequence could not be guaranteed to result in an
underflow (overflow). There is again no guarantee, however, that such a sequence
can aways be identified.

The central advantage of this algorithm compared to the approach described in
the previous section for cache memories is no fix-up computation is required. The
central disadvantages are the need for a precomputation to compute the time division
points, and the possibility the algorithm may fail if such time division points cannot
be identified.

6.3 SIMULATION OF QUEUES USING PARALLEL PREFIX

A thirdapproach to time parallel 'simulations utilizes parallel prefix computations to
determine the state of the simulation across ssimulation time. A prefix computation
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computes the N initial products of N variables XI' X5, <=« ,X:

P =X
Py =X *X
Pz=X *X*X

PNZXI*XZ*”.*XN

where the asterisk (*) is an associative operator. This set of equations can be
rewritten more compactly as the linear recurrence Pi = Pj- | %X, i= 1,2, ... ,N,
where Po is the identity element. As will be discussed momentarily, prefix
computations are of interest because efficient algorithms exist for performing
these computations on a parallel computer.

The simulation of a GIGI| queue®® where the service time does not depend on
the state of the queue can be recast as aprefix computation. Specificaly, let r, denote
the interarrival time of the ith job a the queue, and si denote the service time
assigned to the ith job. These values can be trivially computed in parallel because
they are independent random numbers. The simulation computation must compute
the arrival time of the ith job Ai, and the departure time of the ith job D for
i=1,2,...,N. The arival time of the ith job can immediately be rewritten.as a
linear recurrence:

A=A +ri(=r+rn+-+r),

S0 it can be immediately solved using a parallel prefix computation. The departure
times can aso be written as a linear recurrence. Specificaly, the ith job begins
service either when it arrives, or when the i-1 stjob departs, which ever is later. Thus
D, = max(D,_;, 4;) *+si This can be rewritten as the following linear recurrence:

DN _ (s Ai+s D;
)= ") (%)

where the matrix multiplication is performed using max as the additive operator
(With Identity -00), and + as the multiplicative operator (identity 0). Rewriting the
departure.time equation in this form puts it into the proper format for aparallel prefix
computatiOn.

Because the simulation computation can be specified as a parallel prefix
computation, the only question that remains concerns the parallel prefix computation

Itsdf. The parallel prefix for N initial products can be computed in O(logN) time.
Consider computation of the arrival times Ai' Suppose that the N data values rI*

26 The notation G/ G/ | means a general distribution is used to select the interarrival time and service time
of jopg\Aamivimna@amad&ee. @®iIMNe | denotes the fact that there is one server.
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Ty r; X, Ty Is Ts Iq Te

add value one position
to the left

add value two positions
to the left

add value four positions
to the left

1-2
Figure 6.7 Binary tree for performing a parallel prefix computation.

rz, ..., N are assigned to different processors. The ith initial partial product Ai can

be computed in parallel by defining a binary tree, as shown m Figure 6.7. In the first

step, each datavalue ri is added to the datavalue one position to the left (ri-1)' In the

next step, a new cumulative sum is formed by adding in the value two elements to

the left then four to the left, eight, and so on. If each processor repeats these steps,

dl N m1t1a1 products will be performed in rlogNI steps, as shown in Figure 6.7.
More precisely, the parallel prefix computation is defined as follows:

FOR j=O to rlog NI - 1 DO

FOR ALL i E 21+, 21 +2, ., N) DO IN PARALLEL

NewR[i] .= r[i-2'; + r[i];

END-FOR ALL _ _

FOR ALL i E (2'+Il, 2'+2, ., N) DO IN PARALLEL
F[) := NewR[i):

END-FOR ALL

END-FOR

The FOR ALL statement performs the iterations of the loop in parallel, one iteration
per processor. The second FOR ALL loop is used to copy intermediate results back
into the r array for the next iteration. When the above program completes, r [1 ]
will hold the arrival time for the ith job.

In practice, there will usually be many more partial products than processors, so
one would aggregate groups of the values onto individual processors and perform
computations involving data values on the same processor sequentially. ThiS wiii
improve the efficiency of the parallel algorithm because there wiil. be more lo.ca
computation between interprocessor communications, which are time-consummg
relative to the time to perform an addition.

6.4 SUMMARY

Time parallel“agorithms are currently not as robust as space parallel approaches
because they rely' on specific properties of the system bemg modeled, such as
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specification of the system's behavior as recurrence equations and/or a relatively
simple state descriptor. This approach is currently limited to a handful of important
applications, such as queuing networks, Petri nets, cache memories, and statistical
multiplexers. Space parallel simulations offer greater flexibility and wider applic-
ability, but concurrency is limited to the number of logical processes. In some cases
both time and space parallelism can be used together.

Time parallel algorithms do provide aform a parallelization that can be exploited
when there isn't spatial parallelism available in the application. The three examples
described in this chapter are all examples where there is very little space parallelism
in the original simulation problem. The fact that the time parallel algorithms can
exploit massive amounts of parallelism for these problems highlights the utility of
the time parallel approach, provided suitable algorithms can be developed.

6.5 ADDITIONAL READINGS

Time parallel simulation for trace-driven simulations is described in Heidelberger
and Stone (1990); this is perhaps the first proposal for using this technique.
Extensions to this method to simulate caches are described in Nicol, Greenberg et
d. (1992). The algorithm using regeneration points to simulate ATM multiplexersis
described in Andradottir and Ott (1995) and Fujimoto, Nikolaidis et d. (1995), and
extension of this method to simulate cascaded multiplexers is described in Nikolai-
dis, Fujimoto et d. (1994). Time parallel simulation of queues using parallel prefix
algorithms were first reported in Greenberg, Lubachevsky et d. (1991). Related
work in using time parallel simulation to simulate queues and Petri networks are
described in Lin and Lazowska (1991), Ammar and Deng (1992), Wang and Abrams
(1992), and Baccelli and Canales (1993). Other algorithms have been proposed to
simulate telephone switching networks (Gaujal, Greenberg et d. 1993) and Markov
chains (Heidelberger and Nicol 1991).
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I CHAPTER 7

DVESs: Introduction

We now shift attention to distributed simulation technologies intended to create
computer-generated virtual environments into which users, possibly a geographi-
caly distant locations, can be embedded. Typica applications for this technology are
training and entertainment. As discussed in Chapter |, work in this field has
progressed on a largely separate track from the work described in previous chapters
concerning parallel discrete event simulation (PDES) technology. This can be traced
to the fact that distributed virtual environments (DVESs) have different requirements
than the analytic simulation applications to which PDES has historically been
applied. We begin this discussion by contrasting these two technologies. General
approaches for building DVEs are then discussed. The remainder of this chapter
provides an overview of Distributed Interactive Simulation (DIS) and its successor,
the High Level Architecture (HLA) to describe a typical approach to building
distributed simulation systems for DYE applications.

71 GOALS

A principal goa in most virtual environments is concerned with achieving a
"sufficiently realistic" representation of an actua of imagined system, as perceived
by the participants embedded into the environment. What "sufficiently realistic"
means depends on what one is trying to accomplish. In the context of training, this
means that humans embedded into the environment are able to develop skills that
would be applicable in actua situations they might later encounter. Thus the
environment must be sufficiently realistic that the system with which the operator
isworking, such as an aircraft in the case of aflight smulator, behaves the way area
aircraft would behave in terms of its response to controls and other effects such as
smoke or wind.

Fortunately, every aspect of the environment does not have to be absolutely
accurate in its minutest detail. In redlity, a human is often looking for certain cues
that trigger some action, such as atarget coming into view in aflight smulator. Other
aspects of the environment, such as redlistic looking trees, may not necessarily
conthbifai namadia@. Coredsi ng the effectiveness ofthe environment as atraining
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vehicle, depending on the scenario. This concept that certain parts of the environ-
ment must be more accurately reproduced than others is called selectivefiddlity.

An often discussed goa of many DVEs in the context of adversarial exercises (for
example, military training or multi-user video games) is to achieve what is referred
to as afair fight. This means that the outcome (for example, success or failure of a
user to accomplish some task) depends entirely on the skill of the player rather than
on artifacts of the virtual environment. Success becomes more difficult to achieve if
the players are using different types of computing equipment. For example, one
player should not be able to see atarget any sooner than a second player just because
he is using a high-resolution graphics workstation, while the other is using an
inexpensive personal computer.

Determining "how realistic is realistic enough?" is an important problem that
must be addressed when constructing avirtual environment, but it is a problem that
is beyond the scope of the discussion here. The important thing to note is that there
is tolerance for error built into the application, typically more so than for analytic
simulation applications. This affects the requirements of the underlying distributed
simulation system.

7.2 CONTRASTING DVE AND PDES SYSTEMS

Driven primarily by differing requirements, key features that distinguish DVE from
PDES systems are summarized below:

» Paced versus unpaced execution. Unlike PDES systems which are typically
designed to achieve as-fast-as-possible execution of the simulation, advances
of simulation time in DVEs are amost aways paced with wallclock time.”’
This has important ramifications in the development of the simulation model
and the underlying simulation executive. PDES models and the synchroniza-
tion algorithms described in the previous chapters dl operate correctly despite
arbitrary message latencies. In general, large unpredictable latencies cannot be
tolerated in DVEs.

» Geographical distribution. PDES systems are seldom executed in a geogra
phically distributed fashion because of the difficulty in achieving speedup
when communication latencies are high. However, it is not unusua for users
and other resources (for example, data bases) in DVEs to be geographically
distributed: Thus'PDES systems are typically deployed on multiprocessors,
while DVEs are more often deployed on networked workstations intercon-
nected through a local area network (LAN) or wide area network (WAN).

2z Not all PDES executions are unpaced, however. Execution may be paced if there are physical devices or
human participants interacting with the simulation.
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* Repeatability. Many analytic simulation applications must produce exactly the
same results if the simulation program is re-executed with the same inputs.
This is often not so essential in DVEs.

» Synchronization requirements. Because the goal of a DVE is to provide a
sufficiently realistic environment as perceived by its users, synchronization
requirements can often be relaxed. For example, if two or more events occur 0
close together in time that the humans viewing the environment cannot
perceive which occurred first, it may be permissible for the distributed
simulation to process those events in any order without compromising the
goals of the training exercise (or entertainment session). This is in contrast to
PDES systems where each event is assigned a precise time stamp, and the
simulation executive guarantees that events are always processed in time stamp
order.

The last observation is important because it suggests that one may not need to use
sophisticated synchronization algorithms for much of the DVEs message traffic to
ensure that events are dways processed in time stamp order. Indeed, DYEs that are
deployed today typically do not utilize these algorithms. This aspect will be
discussed in greater detail in Chapter 9.

7.3 SERVER VERSUS SERVERLESS ARCHITECTURES

An important decision in the design of a DVE that includes geographically
distributed participants and/or resources concerns the physical distribution of the
simulation computations. Possible approaches include the following:

» Centralized server architecture. As shown in Figure 7.1(a), interactive users
(clients) may "log into" acentral computer (a server) that maintains the shared
state of the virtual world. Machines a the user's site may perform loca
simulation computations pertaining to entities "owned" by the client, and
generate one or more graphical displays for the user. For example, each loca
machine may be executing aflight simulator program in amulti-user game that
periodically generates messages to the server to indicate the aircraft's current
position. The server maintains the global state of the simulation (for example,
the position of each aircraft) and is responsible for notifying each client
simulator whenever some portion of the virtual world relevant to the client has
changed. For example, the server might reflect a position update message it
received to dl other aircraft simulators that can "see" the aircraft whose
position has changed. Such systems often aso include computation-only
entities (sometime referred to as synthetic forces in. military contexts) that
do not have an interactive user associated with them. An example of a
computation-only entity is a computer-generated "enemy" aircraft in a

wW\Wrhamapalseoopurer dogfight, whose movements are controlled by a
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Figure 7.1 Three DVE architectures with geographicaly distributed users. (a) Centrdized
compute server architecture; (b) cluster of workstations server architecture; (c) distributed,
serverless architecture.

computer program. Such computation-only entities may also be maintained
within the compute server.

Distributed server architecture. This is similar to the centralized server
architecture, except that a multiprocessor or a collection of processors inter-
connected on a LAN is used to implement the server; see Figure 7.1(b). The
shared state of the virtual world is now distributed among the processors within
the compute server and must be maintained by exchanging messages among
these processors. Computation-only entities are typically executed on the
processors within the compute server to take advantage of the high-perfor-
mance interconnection. Changes in the shared state must be transmitted among
the processors within the compute server as well as "end user" processors that
require updates to state information.

+ Distributed, serverless architecture. Rather than utilize a server, the simulation
computations are distributed among geographically distributed processors; see
Figure 7.1(c). Computation-only entities may now be distributed among
geographically distributed processors.

The centralized approach shown in Figure 7.1(a) is the simplest from an
implementation standpoint because global information concerning the state of the
simulation can be maintained on & single computer. The central drawback of this
approach Is,.of course, that-it does|not scale to modeling large numbers of entities.

As more entities are added, there will be insufficient compute cycles to service al of
them.
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The distributed server and distributed, serverless architectures alow one, in
principle, to circumvent the scalability problem in the centralized architecture, since
the number of CPUs can increase in proportion to the number of simulated entities.
The cluster-of-workstations server architecture offers the advantage of low-latency,
high-bandwidth communications among the processors within the server. If the
majority of the communications is computer-to-computer communications as
opposed to user-to-user communications, as would be the case if the DVE is
populated by a large number of computational-only entities, this is a significant
advantage. However, individual user-to-user communications may incur higher
latencies in the server-based approach because two message transmissions are
required, one from the user to the server, and then another from the server to the
second user. Only a single transmission over the WAN is required in the serverless
approach shown in Figure 7.1(c).

A second important consideration in deciding whether to use a server-based or
server-less architecture is reliability and maintainability of the system. In one sense,
server-based systems are less reliable because failure of the server (for example, a
power falure a the location housing the server) will render the entire system
unavailable to any user. But on the other hand, having al of the computers in one
physical location affords the system operators much greater control over the server's
physical environment. System administrators can more easily prevent clumsy users
from tripping over cables or spilling coffee on vital components! Further, mundane
tasks such as making sure dl of the machines are configured properly and have the
appropriate version of the software are simplified if al of the machines are in a
single room under one system administrator.

The remainder of this chapter provides an introduction to DVES by examining
one class of systems. Specificaly, design principles utilized in Distributed Inter-
active Simulation (DIS) systems are discussed next. The section that follows
concerning the High-Level Architecture describes the types of services provided
in a distributed simulation system infrastructure supporting DVEs.

7.4 DISTRIBUTED INTERACTIVE SIMULATION

Distributed Interactive Simulation (DIS) has been used extensively in building DVEs
for training in the defense community. A principal objective of DIS (and subse-
quently the High Level Architecture effort) is to enable interoperability among
separately developed simulators:

The primary mission of DIS is to define an infragtructure for linking simulations of
various types a multiple locations to cregte redigtic, complex, virtud "worlds' for the
smulation of highly interactive activities (DIS Steering Committee 1994).

Although DIS, per 2, has been supplanted by the High-Level Architecture effort,
HLA in fact builds upon and extends the DIS concept, so principles used in DIS till

remaivieleyan 4o ssasieoybeing deployed in the late 1990s.
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A DIS exercise may include (1) human-in-the-loop systems such as tank or flight
simulators (sometimes referred to as virtual simulators), (2) computation only
elements such as wargame simulations (sometimes referred to as constructive
simulations), and (3) live elements such as instrumented tanks or aircraft. Each
simulator participating in the exercise is referred to as a DIS node.

7.4.1 DIS Design Principles
DIS utilizes the following design principles (DIS Steering Committee 1994):

» Autonomous simulation nodes. Autonomy is important because it simplifies
development (developers of one simulator need not be overly concerned with
details of other simulators in the DVE), it simplifies integration of existing
(legacy) simulators into a DVE, and it smplifies allowing smulators to join or
leave the exercise while it is in progress. A DIS node is responsible for
maintaining the state of one or more entities during the simulation execution,
as well as some representation of the state of other entities relevant to it, such
as the position of other entities visible to a human operating the controls in a
tank simulator. The simulator receives inputs from the user and models the
behavior of the entity in response to those inputs. When this behavior causes
actions that may be visible to other entities (for example, firing the canon), the
simulator generates messages referred to as protocol data units (PDUSs) to
notify other nodes of this action. Autonomy among nodes is enhanced in DIS
in two specific ways:

1. DIS nodes are not responsible for identifying the recipients of messages. In
contrast to typical PDES systems, it is the responsibility of the underlying
distributed simulation infrastructure to determine which nodes should
receive notification of the event, and/or receiving nodes to “filter"
messages that do not impact entities assigned to that node. A simple
solution used in SIMNET and early DIS systems was to broadcast the
message to dl simulators, forcing each node to determine which events are
relevant to the entities it is modeling. The general problem of determining
which simulators should receive what messages is referred to as data
distribution management and will be discussed in greater detail in the
Chapter 8.

2. Each smulator in a DIS exercise advances simulation time according to a
local (typicaly hardware) clock. Again, in contrast to PDES systems, no
coordination among simulators is used to advance simulation time. With the
exception of communications that may be necessary to keep these clocks
synchronized (discussed in Chapter 9), each node advances simulation time
autonomously from other nodes.

e Transmission of "ground truth* information. Each node sends absolute truth
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information transmitted to other nodes includes the location and orientation of
the entity, the direction and velocity that it is moving, the position of
subcomponents of the entity (for example, the direction the gun turret of a
tank is pointed), and so on. Any degradation of this information, such as due to
environment effects or sensor limitations, is performed at the receiver.

Transmission of state change information only. To economize on communica-
tions, simulation nodes only transmit changes in behavior. Information
concerning objects that do not change (for example, static terrain) does not
need to be transmitted over the network. |f avehicle continues to "do the same
thing" (for example, travel in a straight line with constant velocity), the rate at
which state updates are transmitted is reduced. Simulators do transmit "keep
alive" messages (referred to as "heart beat" messages), typicdly, every five
seconds, so new simulators entering the exercise will be made aware of these
entities. Periodic updates aso improve the robustness of the system, by
providing resistance to lost messages.

Use of "dead reckoning" algorithms to extrapolate entity state information.
Each node maintains information concerning other entities, such as those that
are visible to it on the battlefield. This information is updated whenever the
entities send new status information via PDUs. In between state updates, al
simulators use common algorithms to extrapolate the current state (position) of
other entities between state updates, based on previously reported information.
This also enables one to reduce the amount of communication that is required
among nodes because less frequent updates are required than if no such
extrapolations were performed. Dead reckoning will be described in greater
detail later in this chapter.

The principal components of a typical DIS simulator are depicted in Figure 7.2.
This node includes a model of the dynamics of the vehicle manned by this node.
Typicdly a continuous simulation is used to model the motion of the vehicle through

network
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system
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concerning the state of [the entities it represents. This state information will
usually be arsubset of the state variables maintained by the node. Typical state

Figure 7.2 Principal components of a virtual simulator in a DIS system (reproduced from
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space. The image generator produces the visual image seen by the operator, using a
database containing descriptions ofthe terrain visible to the vehicle. The controljdis-
play interface and sound generator provide additional inputs and output to the
operator. The "other vehicle state table" maintains information concerning the state
of other entities relevant to this vehicle, such as other vehicles within range of its
sensors. State information concerning this vehicle is sent to other simulators via the
network interface, and updates to state information for other vehicles are received
from this interface.

7.4.2 DIS PDUs

A key ingredient in DIS to support interoperability among simulators is the
definition of standard PDU types that are communicated among simulators. Severa
DIS PDUs are defined to transmit events of interest to entities in different DIS
nodes, among which are the following examples:

* Entity state PDUs contain ground truth information indicating the appearance
and location of an entity.

» Fire PDUs indicate a munition has been fired from an entity. This might cause
a muzzle flash to be produced on the displays of entities that can view the
entity firing the munition.

» Detonation PDUs indicate the trgjectory of a munition has completed. Entities
receiving this PDU must assess their damages and produce appropriate audio
and visua effects from the detonation.

Other simulation events modeled by PDUs include requesting and receiving
service (for example, resupplying the entity or repairing damages), generation of
emissions (for example, electronic warfare), radio communications, and a variety of
other functions. In addition to simulation events, still other PDUs are used to manage
the simulation itsdlf, such as to establish the creation or remova of a new entity.
Much of this functionality is subsumed by the High Level Architecture, so
discussion of this aspect is deferred until later.

For example, atypical sequence of operations in a DIS system between two tank
simulators is depicted in Figure 7.3. This scenario is taken from Miller and Thorpe
(1995). The circled numbers in this figure correspond to the actions listed below:

1 The firgt simulator (the upper diagram in Fig. 7.3) detects that the operator
has pressed a trigger to fire the tank's cannon.

2. The simulator generates an audio signa to the tank's operator indicating that
the cannon has fired.

3. A muzzel flash is produced and|displayed locally to the tank's operator.

4, A Fire PDU is broadeast on the network, and received by the second
simulator.
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Figure 7.3  Sequence of actions between two simulators in DIS (reproduced from Miller and
Thorpe 1995).

5. The muzzle flash for the firg tank is displayed to the operator of the second
tank.

6. Balligtic flyout calculations at the first simulator are used to display atracer
for the shell.

7. Impact of the shell at the target is displayed locally in the first simulator.

8. A Detonation PDU is broadcast over the network, and received a the second
smulator.

9. The impact of the shell is displayed at the second tank.

I0. Calculations assessing the damage are performed at the second tank.

11. Visible effects of the damage, if any, are broadcast to other simulators via an
Entity State PDU

7.4.3 Time Constraints

It is clear that the latency to transmit a message over the network will play an
important role in determining the "realism" of the virtual environment. For example,
if the Fire PDU is delayed in the network, it could be.received by the second
simulator after the detonation PDU is received so it could appear that the effect (the
shell detonating) precedes the cause (the shell being fired) in the second simulator.
Winihe/ihi e anrBidl e egemn to be an unacceptable situation, anomalies such as this
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may be pennissible. If, for instance, the two events occur at approximately the same
time, the operator of the second simulator may not be able to perceive that they
occurred in an incorrect order. Further, in atraining exercise, humans may be able to
"filter" such anomalies s that even if they are noticeable, they do not compromise
the goals of the training exercise.

Human factors studies indicate that people begin noticing latencies when they
exceed 100 milliseconds (Bailey 1982; Woodson 1987). In SIMNET, the goa was to
keep latencies below human reaction times, or 250 milliseconds. A similar value
(300 milliseconds) was subsequently adopted in DIS for "loosely coupled actions'
such as that shown in Figure 7.3 (from trigger pull to display of the muzzle flash at
the remote machine) and 100 milliseconds for "tightly coupled actions' where
detailed, temporally sensitive interactions occur (DIS Steering Committee 1994).
Fighter pilots flying in close fonnation is one example of the latter. Even lower
latencies may be required in other situations, such as when hardware deviCes are
embedded into the virtual environment.

7.5 DEAD RECKONING

Consider a DVE consisting of a collection of vehicles moving over some space.
Assume that each simulator executes on a separate processor and models a single
vehicle. Each ssimulator must generate a display for its driver indicating the position
and orientation of the other vehicles within visual range. Assume that the display is
updated a a rate of 60 times per second. Each simulator maintains localy the
position of other vehicles, and every 17 milliseconds (1/60th of a second) generates
a suitable graphical image. In order to keep other vehicles up to date, each simulator
also broadcasts its current location to the other simulators every 17 milliseconds.
Even if each incoming message requires only 0.1 milliseconds to process, a DVE
containing 100 vehicles will require each simulator to consume amost two-thirds of
its CPU cycles just to process incoming messages. Further, in computing environ-
ments with limited communication bandwidth (for example, users connected to the
Internet via phone lines), the amount of infonnation that must be exchanged is
clearly prohibitive.

~ A technique called dead reckoning can be used to reduce interprocessor
communication. The basic idea is that rather than send frequent state updates,
each simulator estimates the location of remote entities from its last reported
position, direction, velocity, and the like. For example, if it is known that the
vehicle is traveling east a 50 feet per second, and its coordinate pOStiOn &t time 200
seconds into the simulation is (1000, 1000) where each unit corresponds to one foot,
then it can be predicted that one second later it will be at position (1050, 1000)
without transmitting a position update message (see Fig. 7.4).

The tenn “dead reckoning” comes from a technique used to detennine the
position of a ship a sea. A ship's position can be accurately detennined by
examining the position of stars relative to the horizon or from satellites. However,
it-is-not always possible to_do so'because of weather conditions or malfunctioning
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navigational equipment. In such a case the ship's position can be estimated from its
last recorded location and knowledge of its movements since then. This is the same
problem in aDVE; one must extrapolate the position of other moving elements in the
DVE based on recent reports of its location and movements.

In SOIME Cases, if infonnation is available concerning the movement of the object,
MOTe gyhisti cated means can be used to project its future location. For example, if it
IS known that the object is a projectile, its position can be computed using trajectory
cdculalOns. More generdly, the idea of replacing communications with local
computations can be applied whenever a method is available to estimate the
future state of a remote entity based on previous states.

To implement this technique, each simulator maintains a locd model of remote
vehicles called the dead reckoning model (DRM). If the display is updated 60 times
per second, the DRM s interrogated every 17 milliseconds to detennine the current
location of each remote entity visible to this entity.

Of course, this approach breaks down if the vehicle's true motion deviates from
the DRM used by other simulators. This might occur because the user steers the
vehicle to MOV€ jn a new direction, or because the DRM gives only an approxima-
100 1 the vehicle's actual motion, as is typically the case to economize on DRM
computations. gome mechanism is required to "resynch” the DRM if it becomes too
Ill?curate This Problem js addressed by having each vehicle simulator generate an

ate message |f jt detects the DRM other simulators are using has become too
inaccurate \yjh respect to its true position. To accomplish this, each simulator
maintains aloca copy of its own dead reckoning model (see Fig. 7.5). Ifthe position

predicted by the DRM and the true position of the vehicle as computed by the actual
high-fidelity o1 differ by more than some threshold, a message is generated to
proV|de new state mfonnation concerning the vehicle's true position and movement.
The logica operation of this proc&s is illustrated in Figure 7.5. Thus, if a vehicle
continues to "do the same thing," the frequency of update messages that are

oenelRR SR B
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Figure 7.5 Logical operation of dead reckoning in DIS between two flight simulators. The
high-fidelity model for aircraft 2 and its generation of state updates are not shown to simplify
the figure.

In DIS, if the DRM continues to produce sufficiently accurate information,
update messages do not stop completely. As discussed earlier, the update rate drops
to some minimal frequency, such as once every five seconds, providing a means of
notifying new simulators joining the virtual environment of other vehicles already in
the environment.

An important advantage of the dead reckoning approach is that it provides
resilience to lost messages. |f a position update is logt, the simulator will continue to
use dead reckoning to extrapolate its position (although the accuracy may exceed the
prescribed threshold) until the next update is received. This alows the simulation
application to utilize best effort message delivery, as opposed to services guarantee-
ing reliable delivery (by retransmitting lost messages) which introduce additional
latency, and impose additional overheads on the network.

Dead reckoning was first used for distributed simulations in SIMNET. Local state
updates were performed every 1/15th second. Messages were generated a approxi-
mately arate of one per second in DVEs using manned vehicles, and dlightly higher
for aircraft (Miller.and. Thorpe 1995). Somewhat lower traffic rates are reported in
DIS exercises, as will be discussed in the Chapter 8.

7.5.1 ' Dead" Reckoning Maodels

Let pet) denote the true position of a remote entity at time t. Position updates are
oraived af Hmecd t. 72 that indicate P(t). P(£). and 9 on. The dead reckonina
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model produces an estimate D(t) for times t. Let t; denote the most recent state
update earlier than time t, and A¢ denote the quantity t - ti' Three DRMs come to
mind that differ according to the amount of information concerning the remote entity
that is available:

1. Zeroth-order DRM: D(t) = P(%,). In the absence of any additional information,
there is no basis for any other choice.

2. First-order DRM: D(t) = P(1,) T v(t;)A¢, where yeti) is the velocity vector for
the remote entity reported in the update a time ti* This is the model used in the
example in Figure 7.4.

3. Second order DRM: D(t) = P(t,) t v(t,)At +(%)a(t,A)(At)2 where v(t)) is the
velocity vector and a(t;) is the acceleration vector reported in the state update
at time ti'

Extrapolations concerning the orientation of the remote entity can be derived based
on periodic reports of its angular velocity and acceleration.

An example illustrating the use of dead reckoning is shown in Figure 7.6(a). The
dark solid line denotes the true position of a remote vehicle in two-dimensional
space, as determined by that vehicle's high-fidelity model. The thin solid lines
tangent to the true position represents the local simulator's estimation of the remote
vehicle's location, obtained from its local DRM for the remote vehicle. As discussed
earlier, the DRM is sampled at regular intervals in order to generate updates to the
simulator's display. Each such sample is represented by a square box in the figure,
marked A, B, C, and 0 on. In this example, the loca simulator has the correct
position, velocity, and acceleration of the remote vehicle a time t]. The DRM
predicts the vehicle's position at points A, B, and C based on the information it had at
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Figur@/Y\8V . BRabY ekia® Fbkoning scheme. (a) Basic scheme; (b) time compensation;
(c) interpolation to smooth updates.
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time t\. Next, the remote vehicle detects that its DRMs error exceeds the threshold,
0 a state update message is generated at time t,. This information is used the next
time the DRM is sampled in the local simulator, resulting in the corrected position
(point D) to be displayed. Continuing this example, the remote vehicle's position is
next estimated to be a point E.

7.5.2 Time Compensation

One problem with the approach described thus far is that it does not take into
account the latency to send the state update messages over the network. Thus the
position reported in the message is out of date by the time the remote processor
receives the message. |fthe processor updates its display based on the contents of the
message, it will be displaying where the vehicle was L time units ago, where L is the
latency to receive and process the message. The error introduced by not taking into
account this latency could be significant if the vehicle is moving rapidly, or latencies
are large. In awide area network the latency could be hundreds of milliseconds, or
more.

To address this problem, one can include atime stamp in the state update message
indicating the simulation time® at which the update was generated. The receiver can
then compensate for the message latency by using the dead reckoning model to
project the vehicle's position when the message is received and processed. Thistime-
compensated position information is then used to update the remote simulator's
display.

For example, Figure 7.6(b) illustrates the use of this technique. A state update
message is received soon after display update C. Rather than simply using this
position information for the next display update as was done in Figure 7.6(a), the
time stamp of the update message (t,) and the new state information in that message
are used to estimate the true position & the time of update D. That is, the position is
estimated using At equal to (to — t,), where t; is the time for display update D. This
results in position D in Figure 7.6(b) being displayed at the next screen update.

7.5.3 Smoothing

A second problem with the approach discussed so far is that when a state update
message is received and the DRM s reset to a new, corrected position, the remote
vehicle may suddenly "jump" in the display to a new position. This is rather
apparent in Figure 7.6(a) with the abrupt transition of the vehicle's location from
position C to position D in successive frames of the digplay. It is also apparent,
though:not:as-severely-inFigure 7:6(b)==Such jumps will make the environment seem
unnatural to its participants. Thus it is usually preferable to "smooth" the sequence
of state updates that are displayed 0 that the transition to the corrected position
occurs gradually over time. Smoothing usually reduces the absolute accuracy of the

28 Recall that simulation time is essentially synonymous with wallcock time in virtual environments.
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displayed position relative to the true position immediately after an update message
is received because one imposes a delay before the new information is fully utilized.
But this is often preferable to causing sudden jumps in the display.

One approach to smoothing the display is shown in Figure 7.5(c). When the new
update message arrives and is first used by the DRM (point D in Fig. 7.5(c), the
DRM extrapolates the anticipated position of the vehicle some time into the future.
In Figure 7.5(c) the DRM estimates the position of the vehicle a point E, the next
time the display will be updated, using the correction information that was just
obtained. It computes the current position by interpolating between the last displayed
position (point C) and this predicted, future position (point E). It then displays this
interpolated position (point D). When the next display time comes, it will show the
vehicle at point E, the same as ifno smoothing had been used; (see Figure 7.6 (b)
and (c).

More generaly, this technique can be extended to extrapolate the position K
display update times into the future, and interpolating K intermediate positions that
would result before reaching this find position. The example shown in Figure 7.6(c)
uses K = 1. A larger vaue of K may result in a "smoother" transition to the
corrected position. The disadvantage with this approach is that it increases the time
until the simulator reaches its best estimate of the remote vehicle's location (i.e., the
location indicated by its DRM). Thus the accuracy of the displayed position,
averaged over time, may be reduced. This may be irritating to the operator trying
to fire upon a vehicle when the simulator records a miss, even though the user's
weapon was aimed directly at the displayed target! In any event, interpolation does
smooth the transition to the updated state information and helps to produce a more
natural looking display.

7.6 HIGH LEVEL ARCHITECTURE

The discussion thus far concerning DIS has focused on genera design principles and
modeling techniques such as dead reckoning to reduce interprocessor communic-
tion. We now examine the underlying support provided by a distributed simulation
executive to support DVEs such as DIS. Like DIS, the principal goal of the High-
Level Architecture is to support interoperability and reuse of simulations. Unlike
DIS, HLA provides explicit support for simulations other than training. For example,
explicit support for synchronizing analytic simulation models is provided.

In the HLA a distributed simulation is called afederation, and each individua
simulator is referred to as afederate. A federate need not be a computer simulation;
it could be an instrumented physical device (for example, the guidance system for a
missile) or a passive data viewer.

We next give an historical perspective on the HLA, followed by discussion of
technical aspects of HLA federations. We are specifically concerned with the
interface to the distributed simulation executive, called the Run-Time Infrastructure
(RTY) in the HLA, in order to identify the types of services that are provided to
suppdi\BVEENAaraa.com
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7.6.1 Historical Perspective

The roots for the HLA stem from DIS aimed primarily & training simulations and
the Aggregate Level Simulation protocol (ALSP) which applied the concept of
simulation interoperability to wargaming simulations. The HLA development began
in October 1993 when the Defense Advanced Research Projects Agency (DARPA)
awarded three industrial contracts to develop a common architecture that could
encompass the DoD modeling and simulation community. The designs were
received in January 1995 and, with inputs from the DoD community, were combined
to form an initial architecture proposal. In early 1995 the Defense Modeling and
Simulation Office (DMSO) formed a group called the Architecture Management
Group (AMG) which included representatives from several sizable efforts in the
DoD in modeling and simulation. The AMG was given the task of overseeing the
development of the HLA. An initid architecture proposal was given to the AMG in
March 1995, and the HLA began to take form.

The AMG formed several technical working groups to develop specific aspects of
the HLA. These included definition of the Interface Specification and the Object
Model Template, described below, as well as specific technical aspects such as the
time management services dealing with synchronization issues such as those
discussed in Part 1l of this book, and data distribution management for large-scale
distributed simulations. At the same time, a team lead by Mitre Corp. was tasked
with developing a prototype implementation of the RTI. This implementation was
later merged with software developed a MIT Lincoln Laboratories to support large-
scae federations. Several teams were formed to develop initia federations that
would be representative of the DoD modeling and simulation community. Specifi-
cdly, four so-called proto-federations (prototype federations) were formed:

» The platform protofederation including DIS-style training simulations; that is,
real-time human-in-the-loop training simulations.

» The Joint Training protofederation including as-fast-as-possible time-driven
and event-driven wargaming simulation models to be used for command-level
training.

e The anaysis protofederation including as-fast-as-possible event-driven
wargaming simulations such as those that might be used in acquisition
decisions.

» The engineering protofederation including hardware-in-the-loop simulations
with hard real-time constraints.

Protofederation development was largely focused on adapting existing simula-
tionssforsuserinsthesHizAxtonverifysthe claims that such an infrastruture could
successfully support model reuse.

Initial implementations of the RTI and protofederations began to appear in late
1995, with the AMG meeting approximately every six weeks to monitor progress of
the HLLA development, and to- discuss various technical and administrative issues.
Final experimentation was completed in June 1996, and the individual protofedera-
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tions reported their results back to the AMG in July of that year. Based on these
results, the AMG recommended the baseline High-Level Architecture that had been
defined to the Executive Council for Modeling and Simulation (EXCIMS) inAu &
1996. The EXCIMS in turn, recommended the architecture to the undersecreta: of
defense (Acquisition and Technology) for approval and standardization. On Septem-
ber 10, 1996 the undersecretary of defense designated that the HLA become the
standard hlgh-level technical architecture for al modeling and simulation activities
m the U.S. Department of Defense. This meant that all simulation programs in the
DoD would be regUlred to pass certain procedures to certify that they were "HLA
compllant,” or obtain awaiver from this rule. At time of this writing (1999) efforts to
define an |EEE standard for the HLA are in progress. The discussion that follows
IS based on version 1.3 of the HLA that was proposed for standardization by the
IEEE.

7.6.2 Overview of the HLA

Any real-world. entity that is visible to more than one federate is represented in the
HLA by an object. The HLA does not assume the use of object-oriented program-
ming languages, however. Each object instance contains (1) an identity that
distmgUlshes It from other objects, (2) attributes that indicate those state variables
and parameters of an object that are accessible to other objects, and (3) associations
between objects (for example, one object is part of another object).

The HLA mcludes a non-runtime and a runtime component. The non-runtime
component specifies the object model used by the federation. This includes the set of
objec.t .types chosen to represent the real world, the attributes and associations (class
defimtlons) of these objects, the level of detail a which the objects represent the
world (for example, spatiadd and temporal resolution), and the key models and
algorithms (for example, for dead reckoning) that are to be used.

.The runtime component is the RTI that provides fecilities for allowing federates
to mteract With each other, as well as a means to control and manage the execution
(see Fig. 7.7). IndiVidud. federates may be software simulations (combat models,
flight simulators, etc.), live components (for example, an instrumented tank), or
passive data Vlewers The.RTI can be viewed as a distributed operating system that
provides the software enVIronment necessary to interconnect cooperating federates.
It provides several categories of services, as described below. The interface
specification defines a standard set of services provided by the RTI, and application
program interfaces (APIs) for different programming languages.

The state variables for the federation are stored within the federates rather than
the RTI. .TheTI'H’.TI has no knowledge of the semantics of the information that it f
transmlittmg. IS IS necessary to make the RTI general purpose, not tied to detajleg
semantics Of the simulation model. This means that the RTI cannot include
optimizations that reqUlre knowledge of the semantics of the simulation. Dead
reskQuontfafaesanpemf one such optimization. Techniques such as this that
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Federates Federates Federates
software simulators  live components data viewers

Run-Time Infrastructure
adistributed operating system providing
distributed simulation services

Figure 7.7 Components in an HLA federation.

require knowledge of the semantics of the simulation must be implemented within
the federates.

Each object attribute has an owner that is responsible for notifying the RTI
whenever the value of the attribute has been modified. An attribute can have at most
one owner at any time. Federates that have indicated interest in the attribute are
notified of such changes via attribute reflections. Reflections are implemented as
calls from the RTI to the federate indicating which attributes have been modified and
their new values. Different attributes for a single object can be owned by different
federates. At any instant there can be at most one owner of an attribute; however,
ownership of the attribute may pass from one federate to another during an
execution. Any number of other federates may subscribe to receive updates to
attributes as they are produced by the owner.

Federates may interact with each other by modifying object attributes that are
then reflected to other federates that have expressed an interest in that object. A
second way federates may interact is through HL A interactions. Interactions are used
to model instantaneous events not directly associated with an object attribute. For
example, weapon exchanges between combating units will be typically modeled
using interactions rather than updates to attributes.

Each simulation must define a simulation object model (SOM) that identifies the
objects used to model real-world entities in the simulation and specifies the public
attributes, the attributes whose ownership may be transferred, and those attributes
whose value may be received and processed. Using the SOMs for the simulations
thatraresincludedsinsasparticularsfederation, afederation object model (FOM) must
then be developed that describes the'common object model used by all simulations
in the federation. The FOM specifies al shared information (objects, attributes,
associations, ‘and interactions) for a particular federation. The HLA includes an
object model ‘template (OMT) to-provide a standard, tabular format for specifying
objects, attributes, and the relationships among them.
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More precisely, HLA consist of three components:

1. The HLA rules that define the underlying design principles used in the HLA.

2. An object model template (OMT) that specifies a common format for
describing the information of common interest to the simulations in the
federation.

3. An interface specification that defines the services provided by the Run-Time
Infrastructure (RTI) for linking together individual federates.

Each of these is described next.

7.6.3 HLA Rules

The HLA rules summarize the key principles behind the HLA. The rules defined at
the time of this writing are enumerated in Table 7.1. These principles were discussed
in the previous section, so we do not elaborate upon them further.

7.6.4 Object Models and the Object Model Template

In any DVE composed of interacting, autonomous simulators, some means is
required to specify aspects of the virtual world that are visible to more than one
simulation. In the HLA, object models are used for this purpose because they

TABLE 71 HLA rules

1. Federations shdll have an HLA Federation Object Modd (FOM) documented in
accordance with the HLA Object Modd Template.

2. In afederation, dl smulation-associated object ingtance representation shdl be in the
federates, not in the runtime infrastructure (RTI).

3. During afederation execution, al exchange of FOM data among federates shdl occur via
the RTI.

4. During a federation execution, federates shdl interact with the RTI in accordance with
the HLA Interface Specification (IFSpec).

5. During afederation execution, an attribute of an instance of an object shal be owned by
a mogt one federate a any time.

6. Federates shdl have an HLA Smulaion Object Modd (SOM), documented in
accordance with the HLA Object Modd Template (OMT).

7. Federates shdl be able to update and/or reflect any atributes of objects in their SOMs
and send and/or receive SOM interactions externdly as specified in their SOMS,

8. Federaes shdl be able to transfer and/or accept ownership of attributes dynamicaly
during a federation execution, as specified in their SOMs.

9. Federates shdl be able to vary the conditions (e.g., thresholds) under which they provide
updates of attributes of objects, as specified in their SOMs.

10. Federates shdl be able to manage locd time in away that will dlow them to coordinate
data exchange with other members of a federation.

Sour W \VPEEIA A& Bt @ Gimul ation Office.
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provide a convenient means of describing the rea world. Each simulator "adver-
tises" its capabilities with respect to the object attributes it can update and receive
viaits simulation object model (SOM). The federation object model (FOM) specifies
the common objects used by the constituent simulators participating in a federation
execution. Object models in the HLA are documented using a set of tables that are
collectively referred to as the object model template (OMT). The OMT describes
what is actually meant by an object model in the HLA, so the remainder of this
section focuses on the information specified in the OMT.

The OMT specifies the class hierarchy for objects and interactions, and details
concerning the type and semantics of object attributes. It is used to specify both
SOMs and FOMs. Class definitions are similar to those used in object oriented
design methodologies, as discussed in Chapter 2, but differ in severa respects. In
particular, HLA object models only specify object classes and properties of their
attributes. They do not specify the methods or operations for manipulating the
classes. In object-oriented programming the attributes for an instance of an object
are usually encapsulated and stored in one location, while in the HLA attributes for a
single object instance may be distributed across different federates. Moreover HLA
object models are used for defining federations of simulations rather than an
approach to software development.

The OMT (version 1.3) consists of the following tables:

» The object model identification table provides general information concerning
the FOM or SOM such as its name, purpose, version, and point-of-contact
information.

» The object class structure table specifies the class hierarchy of objects in the
SOM/FOM.

» The attribute table enumerates the type and characteristics of object attributes.

» The interaction class structure table defines the class hierarchy defining the
types of interactions in the SOM/FOM.

» Theparameter table defines types and characteristics of interaction parameters.

» The routing space table specifies the nature and meaning of constructs called
routing spaces that are used to efficiently distribute data throughout large
federations, routing spaces and data distribution management are discussed in
detail in Chapter 8.

» The FOM/SOM lexicon is used to describe the meaning of al terms used in the
other tables, such as the meanings of object classes, attributes, interaction
classes, and parameters.

T he,object.and.interaction,classstructure tables and their associated attribute and
parameter tables form the heart of the object model template. These are described in
greater detail next.

Object Class Structure Tablel The object class structure table enumerates the
classes used in the object model, and specifies class/subclass relationships. Class
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names are globaly unique character strings. Subclasses can be defined that are
specializations or refinements of the parent class (called the superclass). A subclass
inherits the attributes and interactions of its superclass. For example, Table 7.2
shows a SOM for a hypothetical World War Il flight smulator. Two classes are
defined, one for moving vehicles, and one for bases. Three subclasses for the Vehicle
class are defined, to distinguish between air, sea, and land vehicles. The Aircraft
subclass is further refined into fixed wing aircraft and zeppelins, and fixed wing
aircraft are refined further to include specific aircraft types (an American P-51
Mustang, a British Spitfire, and a German Messerschmitt ME-109). The aircraft
subclass inherits the position attributes (shown in ancther table, as will be discussed
momentarily) from the Vehicle superclass.

In the HLA OMT a class can have only a single parent class (single inheritance).
Multiple inheritance is not supported at present. Thus the class hierarchy forms a set
of trees (a forest), with the classes a the highest leve (i.e., the first column in the
object class structure table) defining the roots of the trees.

During the execution of the simulation each federate must be notified when
objects "visible" to that federate change, such as when another aircraft being
displayed by a flight simulator turns to move in a new direction. One mechanism
provided in the HLA for this purpose is called declaration mangement which

TABLE 7.2 Example object class structure table

Vehide (PS) Aircraft (P9) Fixed Wing (PS) P-51 Mustang (S)
Spitfire (PS)
ME-109 (S)
Zeppdin (9
Naval vesde (S) Submarine (9 V-bodt (S)
Battleship (S lowa class (9
Aircraft carrier (S)
Land vehide (9 Tark (9 Panzer (S)
Sherman ()
Jeep (9)
Bas (9) Air fidd (P9)
Sea port (S
WWww-aha agrrgéﬁgﬁ S
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implements class-based subscription. Specifically, a federate can subscribe to
attributes of an object class, indicating it wishes to receive notification whenever
that attribute of any object instance of that class is modified. For example, if a
federate subscribes to the position attribute of the Spitfire class, it will receive a
message for any update to the position attribute of any Spitfire object in the
federation. Note that class-based subscription alows a federate to track changes to
all spitfire objects. The federate must discard updates corresponding to spitfires that
are not of interest to it, such as that are too far away to bevisible to its pilot. A more
sophisticated mechanism by which the RTI automatically eliminates these messages
will be discussed in Chapter 8.

A federate may subscribe at any point in the class hierarchy. Attributes of a class
are inherited by the subclasses of that class. Subscribing to an attribute of aclass at a
certain leve in the hierarchy automatically subscribes the federate to that attribute as
it is inherited by al the subclasses of that class. For example, in Table 7.2, a
subscription to the position attribute of the Fixed Wing class will result in
subscription to the position attribute of the P-51, Spitfire, or ME-109 subclasses.
If subclasses are later added, such as a B-17 subclass of the Fixed Wing class to
include bombers in the exercise, federates subscribed to the Fixed Wing class need
not change their subscription to aso receive position updates for this new type of
aircraft.

The object class structure table also indicates a federate's (or federation's, in the
case of FOMs) ahility to publish (update) the value of attributes of an object class, or
to subscribe to (and thus receive and react to) attribute updates. This is represented
by P or S flags with each class.?® Table 7.2, for instance, shows publication and
subscription information for a flight simulator modeling a Spitfire. It is able to
update attributes of the Sypitfire class, and can process updates to attributes of other
classes that it uses to update the display shown to the Spitfire's pilot.

Attribute Table Each object class includes a fixed set of attribute types.
Attributes specify portions of the object state shared among federates during the
execution. The object model template represents the following characteristics of
attributes (corresponding to columns in the attribute table):

» Object class. This indicates the class in the object class structure table, such as
Vehicle, and can be chosen from any level in the class hierarchy.

« Attribute name. This specifies the name of the attribute, such as position.

» Data type. This field specifies the type of the attribute and is not unlike type
specifications in conventional programming languages. For basic data types,
this field specifies one of a standard set of base data types, such as integer or
floating point:"Alternatively, user-defined data types can be specified. Records
can be defined including multiple fields, such as the coordinate position and
altitude of an aircraft. |n this case individual fields are specified in a complex
data-type table that includes information similar to the attribute table in that

29t is possible to define classes that are neither subscribable nor publishable. A federate may not be able
to publish or subscribe to the object class, but it can publish or subscribe to a subclass of that object class.
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units, accuracy, and the like, are specified. Enumerated types can aso be
defined, in which case another table is used to specify possible values and their
representation.

» Cardinality. This field is used to record the size of an array or sequence.

 Units. This specifies the units for numeric values, such as meters or kilograms.
This and the resolution and accuracy fields do not apply to complex and
enumerated types.

 Resolution. This indicates the smallest difference between published values of
the attribute. For example, if dtitude is recorded to the nearest 100 meters, then
the resolution is 100 meters.

« Accuracy. This indicates the maximum deviation of the attribute's value from
the intended value (for example, recall the use of thresholds in dead reckoning
schemes). This may be specified as "perfect” to indicate that there is no
deviation between published values and the intended value. Note that this
parameter does not specify the accuracy of the simulation model, only how
close published values are to the true simulated value (which mayor may not
be very accurate to real-world systems).

» Accuracy condition. This allows one to specify conditions under which the
accuracy specification applies. This may be specified as always to indicate the
accuracy specification aways applies.

» Update type. This indicates the policy used for updating the attribute. This is
specified as static (meaning it is not updated), periodic if it is updated at
regular intervals, or conditional if it is updated when certain conditions occur,
such as when a dead reckoning threshold is exceeded.

» Update condition. This elaborates on the update type field. For example, if
updates are periodic, it specifies the rate.

» Transferable/acceptable. This indicates whether the federate is able to trans
fer/accept ownership of the attribute to/from another federate.

» Update/reflect. This indicates whether the federate is able to update/reflect the
attribute vaue.

Interaction Class Structure Table Interactions are actions taken by one
federate that have an affect on another federate(s). A class hierarchy similar to
that used for objects is used to document interaction types. For example, in Table 7.3

TABLE 7.3 Example interaction class structure table

Shoot Aircraft cannon (IR)
Bomb (1S)
Torpedo (S)
www.manaraa.com Anti-aircraft (R)
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a shoot interaction is defined. Four subclasses of the interaction are specified
corresponding to cannon fire, dropping a bomb, launching a torpedo, and anti-
aircraft fire

Entries in the interaction class structure table are annotated to indicate whether
the federate can initiate (1), react (R), or sense (S) interactions. A federate can initiate
an interaction if it is able to send that interaction class with appropriate parameters.
For example, in Table 7.3 the Spitfire simulator can generate cannon fire and drop
bombs but cannot fire atorpedo or generate anti-aircraft fire. A federate can react to
interactions, if it can recelve them, and produce appropriate changes in state; for
example, it can generate appropriate attribute updates in response to the interaction.
Table 7.3 indicates the Spitfire can react to cannon fire and anti-aircraft interactions,
such as by producing damage and generating state updates to designate damage or
destruction of the aircraft. The third category, sense, indicates that the object can
receive interactions, but cannot produce suitable reactions to the interaction. In this
example, the Spitfire can sense torpedo launches and bombs dropped by other
aircraft and update its local display, if necessary, but it cannot (and should not) create
atribute updates as the result of these interactions. Observers in the battlefield
(called Sealth viewers) similarly can receive interactions and display them but
cannot generate suitable actions from the interaction. The rules concerning inheri-
tance of classes in interaction class structure tables are essentially the same as those
of the object class structure table.

Parameter Table Just as attributes provide state information for objects, para-
meters provide state information for interactions. Parameter types are specified in the
parameter table. The parameter table includes many fields that are similar to attribute
tables. Specifically, it includes columns to specify the interaction class, parameter
name, and the data type, cardinality, units, resolution, accuracy, and accuracy
condition for parameters. Their meaning is similar to that specified in the attribute
table. The other entries in the attribute table that are not included in the parameter
table concern state updates and ownership transfer, which do not apply to interac-
tions.

7.6.5 Interface Specification

In the HLA there is a clear separation between the functionality of individual
federates and the RTI. For example, al knowledge concerning the semantics and
behavior of the physical system being modeled is within the federate. Further the
actual state of the simulation model aso resides within the federate. This dlows the
RTI to be a genera software component that is applicable to any federation. The RTI
could._be used._for._general_(i.e,..nondefense) distributed virtual environments,
although its functionality was derived primarily from requirements originating
from the defense modeling and simulation community.

The interface specification defines a set of services provided by simulations or by
the' Run-Time Infrastructure (RTI) during a federation execution. HLA runtime
services fal into the following categories:

7.6 HIGH LEVEL ARCHITECTURE 219

 Federation management. This includes services to create and delete federation
executions, to alow simulationsto join or resign from existing federations, and
to pause, checkpoint, and resume a federation execution.

 Declaration management. These services provide the means for simulations to
establish their intent to publish object attributes and interactions, and to
subscribe to updates and interactions produced by other simulations.

e Object management. These services alow simulations to create and delete
object instances, and to produce and receive individual attribute updates and
interactions.

» Ownership management. These services enable the transfer of ownership of
object attributes during the federation execution; recall that only one federate is
allowed to modify the attributes of an object instance at any time.

» Time management. These services coordinate the advancement of logical time,
and its relationship to wallclock time during the federation execution.

 Data distribution management. These services control the distribution of state
updates and interactions among federates, in order to control the distribution of
information s0 that federates receive dl of the information relevant to it and
(idedlly) no other information.

7.6.6 Typical Federation Execution

A typical federation execution begins with the invocation of federation management
services to initialize the execution. Specificdly, the Create Federation Execution
service is used to start the execution, and each federate joins the federation via the
Join Federation Execution service.

Each federate will then use the declaration management services to specify what
information it can provide to the federation, and what information it is interested in
receiving. The Publish Object Class service is invoked by the federate to indicate it
is able to provide new values for the state of objects of a specific class, such as the
position of vehicles modeled by the federate. Conversely, the Subscribe Object Class
Attribute service indicates the federate is to recelve al updates for objects of a
certain class, such as the atitude attribute of al aircraft objects. Federates may use
the data distribution management services to further qualify these subscriptions,
such as to say that the federate is only interested in aircraft flying at an dtitude
greater than 1000 feet. The federate may then inform the RTI of specific instances of
objects stored within it via the Register Object Instance (object management)
service.

After the execution has been initialized, each federate models the behavior of the
entities for which it is responsible. The federate may interact with other federates
through object management services. The federate notifies other federates via the
RTI of changes in the state of objects under its control via the Update Attribute
Values object management service. This will cause the RTI to generate messages for
al other federates that have expressed interest in receiving these updates via their
sulyganiti e Adepnatizeynthe federate may issue interactions with other federates
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that are not associated with modifying the state of an object viathe Send Interaction
service. This might be used to exchange weapons fire, for example. As objects are
registered and "become visible" to federates that have subscribed to their attribute
values, the RTI notifies the federate of the existence of these objects viathe Discover
Object Instance service. Similarly this service is invoked as objects come "within
range." For example, this service might be invoked as an aircraft reaches an altitude
of 1000 feet in the previous example, or as new vehicles come within view of atank
simulator, causing the tank simulator to display the vehicle to the user, and to track
and update its position.

Throughout the execution, analytic simulations invoke the time management
services to ensure that events are processed in time stamp order and to advance
simulation time. For example, the Next Event Request service requests the next
smallest time-stamped event from the RTI and also causes the federate's simulation
time to advance.

As mentioned earlier, an object can be updated by at most one federate, called the
object's owner. A handoffprotocol is provided in the RTI to transfer ownership from
one federate to another. For example, a missile launch might be controlled by the
army's simulation, but the trajectory of the missile's flight may be controlled by the
air force's smulation. A federate can invoke the Negotiated Attribute Ownership
Divestiture service to begin the process of transferring ownership to another
federate. The RTI invokes the Request Attribute Ownership Assumption service in
other federates to identify a federate that will take over ownership of the attribute.
The federate taking on ownership responds by calling the Attribute Ownership
Acquisition service. The RTI confirms the ownership transfer to both parties by
invoking the Attribute Ownership Divestiture Notification and Attribute Ownership
Acquisition Notification services in the federates giving up, and receiving ownership,
respectively.

Finaly, at the end of the execution, each federate invokes the Resign Federation
Execution service. The execution is terminated by invoking the Destroy Federation
Execution service.

7.7 SUMMARY

This chapter provided a bird's eye view of distributed simulations for DVEs. DIS is
illustrative of a typical DVE. Although designed for military applications, it
introduces design principles such as autonomy of simulation nodes and dead
reckoning that apply to commercial applications, particularly those requiring many
simulation nodes. A noteworthy observation in this discussion is that DVEs must
appear-realistic.to-participants.embedded.in the simulation environment, sometimes
at the expense of absolute accuracy. Smoothing techniques used ill conjunction with
dead reckoning algorithms is one example. This is an important distinction between
distributed simulations for DVESs and for analytic analysis.

While' the -discussion of' DI S=provides insight into the operation of simulator
nodes in a DVE, the discussion of the High Level Architecture provides insight into
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the interface between simulators, and between simulators and the runtime infra-
structure. In particular, the object model template provides some insight into the kind
of information that simulations must agree upon in order to interoperate. The HLA
interface specification provides an overview of the types of services one might
expect to find in an RTI supporting DVEs. The chapters that follow focus on
realization of RTI services.

7.8 ADDITIONAL READINGS

An overview of the SIMNET project by two of its principal architectsis presented in
Miller and Thorpe (1995). The DIS vision and underlying design principles are
presented in DIS Steering Committee (1994). More detailed discussions are
presented in Goldiez, Smith et a. (1993) and Hofer and Loper (1995), and its
relationship to modeling and simulation in the Department of Defense is described in
Davis (1995). Specifics concerning the DIS protocols, PDUs, formats, and the like,
are described in |EEE standards documents (IEEE Std 1278.1-1995 1995; |IEEE Std
1278.2-1995 1995). These references aso include a description of the dead
reckoning protocol used in DIS. An alternative approach to dead reckoning based
on utilizing past position measurements to project current positions of remote
objects is described in Singhal and Cheriton (1994).

Detailed documentation concerning the High Level Architecture is available from
the Defense Modeling and Simulation Office (DMSO) through their Internet web
site (http://hla.dmso.mil). This site includes documents concerning the HLA rules
(Defense Modeling and Simulation Office 1996), object model template (Defense
Modeling and Simulation Office 1996), and interface specification (Defense Model-
ing and Simulation Office 1998). An introduction to the HLA is presented in
Dahmann, Fujimoto et d. (1997).
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I CHAPTER 8

Networking and Data Distribution

The network plays a critical role in distributed simulation systems. Simulator-to-
simulator message latency can have a large impact on the realism of the virtual
environment. One hundred to 300 milliseconds are considered adequate for most
applications, though for some, latencies as low as a few tens of milliseconds may be
required. Aggregate network bandwidth, the amount of data transmitted through the
network per unit time, is also important because large-scale distributed simulations
can easily generate enormous amounts of data. Thus it is important both to achieve
maximal bandwidth and minimal latency in the network itself, as well as to control
the amount of data that must be transmitted and till provide each participant a
consistent view of the virtual world.

81 MESSAGE-PASSING SERVICES

All networks provide the ability to transmit messages between simulators. Having
said that, there are a number of different characteristics that differentiate different
types of network services. Some of the more important characteristics for DVEs are
enumerated below. Simple DVEs may utilize only one type of communication
service. Other DVES especially ones designed to handle a large number of
participants, typically utilize a variety of different services.

8.1.1 Reliable Delivery

A reliable message delivery system is one where the service guarantees that each
message will be received at the specified destination(s), or an exception will be
raised for any message that cannot be delivered. Typically this means the networking
software will retransmit messages if it cannot determine (for example, via an
acknowledgment message) that the message has been successfully received. An
unreliable or best-effort delivery service does not provide such a guarantee.

For many types of information, such as periodically generated position update
messages, unreliable communication services are often preferred because they
normally incur less latency and overhead than reliable services. An occasional lost
nYessageTrAia ralaraahhecause a new update will be sent before long anyway. On
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the other hand, reliable delivery is preferred in other cases, such as if alost message
causes a simulator to lock up, waiting for the lost message to arrive, or to enter an
inconsistent state.

8.1.2 Message Ordering

An ordered delivery service guarantees that successive messages sent from one
simulator to another will be received in the same order in which they were sent. This
property may or may not be provided with the network delivery service. For
example, if successive messages are routed aong different paths through the
network, they may not arrive in the same order that they were sent. On the other
hand, if the network transmits messages along a single path and ensures that a
message cannot jump ahead of other messages in message queues, ordered delivery
is ensured. If the network does not provide ordered delivery and this property is
required, the processor receiving the messages will have to ensure that they are
correctly ordered before delivering them to the recelver. This is often accomplished
by attaching a sequence number to each message and making sure the destination
reorders messages according to the sequence number. As discussed later, this
capability is often realized within the network communication software.

More sophisticated message ordering is sometimes important in DVES, extending
well beyond the ordering of messages sent between each pair of processors. Certain
anomalies such as the effect of some action appearing to happen before the cause
may occur unless precautions are taken. This will be discussed in greater detail in
Chapter 9.

8.1.3 Connection-Oriented versus Connectionless Communication

In a connectionless (also called a datagram) service, the sender places the data it
wishes to transmit into a message, and passes the message to the networking
software for transmission to the destination(s). This is analogous to mailing a letter
through the postal system. In a connection-oriented service, the sender must first
establish a connection with the destination before data can be sent. After the data
have dl been sent, the connection must be terminated. Connection-oriented services
are analogous to telephone services.

A connectionless service is often preferred for much of the information
transmitted among simulators, such as for state updates, because of its smplicity.
On the other hand, a connection-oriented service is better for streams of information,
such as an audio or video channel established between a pair of simulators.

8:l:4-mUnicastyversussGroups€Communication

A unicast service sends each message to a single destination. A broadcast service
sends a .copy of the message to al possible destinations, while a multicast
mechanismisends it to more than one, but not necessarily dl, destinations. Multicast
communication is-important when realizing large-scale smulations. For example, a
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typical operation is aplayer needs to send a state update message to the other players
that can see it. More will be said about how multicast can be used in DVESs later in
this chapter.

8.1.5 Examples: DIS and NPSNet

The communication requirements in the DIS standard 1278.2 specify three classes of
communication services, based in part on existing networking products:

1. Best-effort multicast
2. Best-effort unicast
3. Reliable unicast

These communication services are available in the Internet Protocol suite, discussed
later in this chapter. There, best-effort communication is achieved using the
connectionless User Datagram Protocol (UDP) and reliable communication is
achieved using the Transmission Control Protocol (TCP) which provides a connec-
tion-oriented service.

Conspicuously missing from the DIS communication services is reliable multi-
cast. Reliable multicast is considered important in many DVES, but when the DIS
protocols were defined, realization of this service was not sufficiently mature to
enable inclusion in the DIS standard. At the time of this writing in the late 1990s,
realization of reliable multicast services is dtill an active area of research in the
networking community.

In DIS best-effort communication is typicaly used for entity state PDUs
(ESPDUSs). Loss of ESPDUs can be tolerated so long as they are not too frequent
because new updates are generated at regular intervals. These PDUs make up the
lion's share of communications in typical DIS exercises; one demonstration exercise
reports 96% of the total DIS traffic was ESPDUs (Cheung 1994). Reliable
communications are often used for nomecurring events where losses are more
problematic, such as fire and detonation PDUs.

A second example illustrating the communication services typically used in large
DVEs is NPSNet. NPSNet is a project at the Naval Post Graduate School aimed at
developing large-scale virtual environments containing thousands of users. The
NPSNet communications architecture is described in Macedonia, Zyda et d. (1995).
It provides four classes of communications:

1 Light weight interaction. This service provides a best-effort, connectionless
group communication facility. State updates, interactions, and control
messages will typically use this service. Each message must be completely
contained in a maximum transfer unit (MTU), sized at 1500 bytes for Ethernet
and 296 bytes for 9600 bits/second point-to-point links. It is implemented

WWWYiHT R EESSashspmmMunication mechanism.
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2. Network pointers. These provide references to resources, analogous to links in
the World Wide Web. They are somewhat similar to lightweight interactions
(for example, both use multicast) but contain references to objects, while
lightweight interactions contain the objects themselves.

3. Heavy weight objects. These provide a reliable, connection-oriented commu-
nication service.

4. Real-time streams. These provide real-time delivery of continuous streams of
data, as well as sequencing and synchronization of streams. They are intended
for transmission of video or audio streams.

8.2 NETWORKING REQUIREMENTS

The success of a DVE, especially large-scale DVES containing many participants
often depends critically on the performance of the underlying network infrastructure.
For example, networking requirements for DIS are described in |IEEE Std 1278.2-
1995 (1995). Specific requirements include the following:

» Low latency. As discussed in the previous chapter, the DIS standard calls for
simulator-to-simulator latencies of under 300 milliseconds for most (termed
loosely coupled) interactions, and 100 millisecond latency for tightly coupled
interactions, such as where a user is closely scrutinizing the actions of another
participant in the DVE.

» Low-latency variance. The variance of delay between successive messages sent
from one processor to another is referred to asjitter. Low jitter may be required
in a DVE to maintain a realistic depiction of the behavior of remote entities.
Jitter requirements can be alleviated somewhat by buffering messages at the
receiver to smooth fluctuations in latency. Dead reckoning aso provides some
resilience to delay variance. The DIS standard specifies a maximum dispersion
of arrival times for a sequence of PDUs carrying voice information to be 50
milliseconds.

* Reliable delivery. As discussed previously, best-effort communication is
sufficient for much of the traffic generated in a DVE, but reliable delivery is
important for certain, nonperiodic events. The DIS standard calls for 98% of
the PDUs for tightly coupled interactions and 95% for loosely coupled
interactions to be delivered within the specified latency requirement.

e Group communication. Group communication services are important for
moderate-to-large-DV-ES;-especially in geographically distributed systems
where broadcast communication facilities are not readily available. A multicast
group. is the set of destinations that is to receive messages sent to the group,
analogous to the set of subscribers to an Internet newsgroup. Large DVES
present a particularly ‘challenging application for multicast protocols because
they may require group communication services that support the following:
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1. Large numbers of groups (for example, thousands).
2. A single simulator to belong to many different groups at one time.

3. Frequent changes to group composition that must be realized quickly (for
example, within a few milliseconds) so that simulators do not miss
important information.

Data distribution techniques are described later in this chapter, providing some
insight into the usage of group communication services in large-scale DVEs.

» Security. Certain applications such as defense simulations have security
requirements (for example, to prevent eavesdropping on classified informa
tion). Sensitive data must be encrypted at the source and decrypted at the
destination. This of course affects the latency requirements, which must
include the time to perform such operations.

8.3 NETWORKING TECHNOLOGIES

As discussed in Chapter 1, networks may be broadly categorized as loca area
networks (LANS) covering a limited physical extent (for example, a building or a
campus), metropolitan area networks (MANS) covering a city, and wide aea
networks (WANSs) that can extend across continents. Unlike parallel computing
platforms which typically use proprietary interconnection networks, the distributed
computers typically used to implement DV Es have standard networking technologies
for interconnecting machines.

In general, LANs provide a much "friendlier" environment for distributed
simulation systems than WANs (MANs are intermediate between these two).
LANSs often operate at link bandwidths, ranging from many megabits per second
(for example, Ethernet operates a 10 MBits per second) up to a gigabit per second or
more, and can achieve application-to-application latencies of a few milliseconds or
less. They typically have error rates ranging from 10-8 to 10-2. By contrast, linksin
WANSs typically range in bandwidth from thousands of bits per second up to megabit
per second, and they often incur latencies on the order of hundreds of milliseconds or
more. Error rates are on the order of 10-5 to 10-7. Bandwidth is important in
distributed virtual environments because the different computers executing the
distributed simulation must perceive a common state of the virtual world, and a
substantial amount of interprocessor communication is required to keep this world
consistent among the different participants.

8.3.1 LAN Technologies

Historically LAN interconnects have typically been based on either a shared bus or a
ring interconnection scheme (see Fig. 8.1). A recent phenomenon is the appearance
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Figure 81 Typica LAN topologies. (a) Bus-based network; (b) ring network.

host computer

(ATM) switching technology. These are increasing in popularity, especially for
applications requiring high bandwidth. Bus and ring topologies date back to the
1970s and have been in widespread use since then. Each is discussed next.

Bus-Based Networks In a bus-based system each computer connects directly
to the bus viaatap. Actualy, as shown in Figure 8.1(a), the bus may consist of many
bus segments that are interconnected by a circuit, called a repeater, that copies the
signa from one segment of the bus to another, amplifying the signal to compensate
for attenuation. Each message is broadcast over the bus. Processors connected to the
bus must check the address of the message against their local address and read the
message into their local memory if there is a match.

A complication arises concerning access to the bus. If more than one processor
simultaneously places data onto the bus, the data will become garbled, and neither
message will get through. This is not unlike two people trying to talk at the same
time during a conversation. Thus it would be prudent to check that the bus is idle
before beginning to transmit. However, suppose that while the bus is in use by some
processor, two other processors decide they want to send a message. Both will wait
until the bus becomes idle, then both will simultaneously begin transmitting. This
will result in a collision; that is, the data on the bus will be garbled.

To address this problem, aMedium Access Control (MAC) protocoal is required. A
well-known example of a MAC protocol is the exponential back-off algorithm used
inpEthernetsnEachsprocessorssendings@ message can detect that a collision has
occurred by noticing that the data on the bus does not match the data it is sending.
When this occurs, the processor stops transmitting and puts ajamming signal on the
bus to make sure that all other processors have recognized that there is a collision.
The processor then becomes idle for a certain, randomly selected amount of time
ranging from Oto K - 1time periods, and it repesats the process by waiting until the
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bus becomes free before retransmitting the message. In Ethernet, K is initialized to 2
for each message but is doubled with each successive collision in trying to send that
message. To prevent excessively long delays because K has become too large, the
exponential growth is often stopped when it has reached a maximum value. At this
point the retransmission interval is based on arandom number drawn between 0 and
K max. Where K5 is maximum value assigned to K. This retransmission algorithm is
referred to as the truncated binary exponential backofJ algorithm. The Ethernet
MAC protocol is an example of what is commonly referred to as a Carrier Sense
